Cargando…

Advances in FDTD computational electrodynamics : photonics and nanotechnology /

This book presents the current state-of-the-art in formulating and implementing computational models of light with materials such as silicon and gold at the nanoscale. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique. It will help you understand the latest...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Taflove, Allen (Editor ), Oskooi, Ardavan (Editor ), Johnson, Steven G., 1973- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Artech House, 2013.
Colección:Artech House antennas and propagation library.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology
  • Contents
  • Preface
  • Chapter 1 Parallel-Processing Three-Dimensional Staggered-Grid Local-Fourier-Basis PSTD Technique
  • 1.1 INTRODUCTION
  • 1.2 MOTIVATION
  • 1.3 LOCAL FOURIER BASIS AND OVERLAPPING DOMAIN DECOMPOSITION
  • 1.4 KEY FEATURES OF THE SL-PSTD TECHNIQUE
  • 1.4.1 FFT on a Local Fourier Basis
  • 1.4.2 Absence of the Gibbs Phenomenon Artifact
  • 1.5 TIME-STEPPING RELATIONS FOR DIELECTRIC SYSTEMS
  • 1.6 ELIMINATION OF NUMERICAL PHASE VELOCITY ERROR FOR A MONOCHROMATIC EXCITATION
  • 1.7 TIME-STEPPING RELATIONS WITHIN THE PERFECTLY MATCHED LAYER ABSORBING OUTER BOUNDARY1.8 REDUCTION OF THE NUMERICAL ERROR IN THE NEAR-FIELD TO FAR-FIELD TRANSFORMATION
  • 1.9 IMPLEMENTATION ON A DISTRIBUTED-MEMORY SUPERCOMPUTING CLUSTER
  • 1.10 VALIDATION OF THE SL-PSTD TECHNIQUE
  • 1.10.1 Far-Field Scattering by a Plane-Wave-Illuminated Dielectric Sphere
  • 1.10.2 Far-Field Radiation from an Electric Dipole Embedded within a Double-Layered Concentric Dielectric Sphere
  • 1.11 SUMMARY
  • REFERENCES
  • Chapter 2 Unconditionally Stable Laguerre Polynomial-Based FDTD Method2.1 INTRODUCTION
  • 2.2 FORMULATION OF THE CONVENTIONAL 3-D LAGUERRE-BASED FDTD METHOD
  • 2.3 FORMULATION OF AN EFFICIENT 3-D LAGUERRE-BASED FDTD METHOD
  • 2.4 PML ABSORBING BOUNDARY CONDITION
  • 2.5 NUMERICAL RESULTS
  • 2.5.1 Parallel-Plate Capacitor: Uniform 3-D Grid
  • 2.5.2 Shielded Microstrip Line: Graded Grid in One Direction
  • 2.5.3 PML Absorbing Boundary Condition Performance
  • 2.6 SUMMARY AND CONCLUSIONS
  • REFERENCES
  • Chapter 3 Exact Total-Field/Scattered-Field Plane-WaveSource Condition3.1 INTRODUCTION
  • 3.2 DEVELOPMENT OF THE EXACT TF/SF FORMULATION FOR FDTD
  • 3.3 BASIC TF/SF FORMULATION
  • 3.4 ELECTRIC AND MAGNETIC CURRENT SOURCES AT THE TF/SF INTERFACE
  • 3.5 INCIDENT PLANE-WAVE FIELDS IN A HOMOGENEOUS BACKGROUND MEDIUM
  • 3.6 FDTD REALIZATION OF THE BASIC TF/SF FORMULATION
  • 3.7 ON CONSTRUCTING AN EXACT FDTD TF/SF PLANE-WAVE SOURCE
  • 3.8 FDTD DISCRETE PLANE-WAVE SOURCE FOR THE EXACT TF/SF FORMULATION
  • 3.9 AN EFFICIENT INTEGER MAPPING
  • 3.10 BOUNDARY CONDITIONS AND VECTOR PLANE-WAVE POLARIZATION3.11 REQUIRED CURRENT DENSITIES Jinc AND Minc
  • 3.12 SUMMARY OF METHOD
  • 3.13 MODELING EXAMPLES
  • 3.14 DISCUSSION
  • REFERENCES
  • Chapter 4 Electromagnetic Wave Source Conditions
  • 4.1 OVERVIEW
  • 4.2 INCIDENT FIELDS AND EQUIVALENT CURRENTS
  • 4.2.1 The Principle of Equivalence
  • 4.2.2 Discretization and Dispersion of Equivalent Currents
  • 4.3 SEPARATING INCIDENT AND SCATTERED FIELDS
  • 4.4 CURRENTS AND FIELDS: THE LOCAL DENSITY OF STATES