Forcing for mathematicians /
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbid...
Call Number: | Libro Electrónico |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
[Hackensack] New Jersey :
World Scientific,
[2014]
|
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- 1. Peano arithmetic
- 2. Zermelo-Fraenkel set theory
- 3. Well-ordered sets
- 4. Ordinals
- 5. Cardinals
- 6. Relativization
- 7. Reflection
- 8. Forcing notions
- 9. Generic extensions
- 10. Forcing equality
- 11. The fundamental theorem
- 12. Forcing CH
- 13. Forcing [symbol]CH
- 14. Families of entire functions
- 15. Self-homeomorphisms of [symbols]I*
- 16. Pure sttes on [symbol](H)*
- 17. The diamond principle
- 18. Suslin's problem, I*
- 19. Naimark's problem*
- 20. A stronger diamond
- 21. Whitehead's problem, I*
- 22. Iterated forcing
- 23. Martin's axiom
- 24. Suslin's problem, II*
- 25. Whitehead's problem, II*
- 26. The open coloring axiom
- 27. Self-homeomorphisms of [symbols], II*
- 28. Automorphisms of the Calkin algebra, I*
- 29. Automorphisms of the Calkin algebra, II*
- 30. The multiverse interpretation.