Cargando…

Speech Enhancement : a Signal Subspace Perspective.

Speech enhancement is a classical problem in signal processing, yet still largely unsolved. Two of the conventional approaches for solving this problem are linear filtering, like the classical Wiener filter, and subspace methods. These approaches have traditionally been treated as different classes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Benesty, Jacob
Otros Autores: Jensen, Jesper Rindom, Christensen, Mads Graesboll, Chen, J. (Jingdong)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier Science, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn868489114
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140118s2014 vtu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d N$T  |d B24X7  |d COO  |d OCLCF  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCA  |d MERUC  |d K6U  |d UUM  |d OCLCQ  |d CNCGM  |d S9I  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9780128002537  |q (electronic bk.) 
020 |a 0128002530  |q (electronic bk.) 
020 |z 9780128001394 
029 1 |a DEBBG  |b BV043607020 
029 1 |a DEBSZ  |b 431597103 
029 1 |a NLGGC  |b 374674450 
035 |a (OCoLC)868489114 
050 4 |a TK7882.S65 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.4/5  |2 23 
049 |a UAMI 
100 1 |a Benesty, Jacob. 
245 1 0 |a Speech Enhancement :  |b a Signal Subspace Perspective. 
260 |a Burlington :  |b Elsevier Science,  |c 2014. 
300 |a 1 online resource (143 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Half Title; Title Page; Copyright; Contents; 1 Introduction; 1.1 History and Applications of Subspace Methods; 1.2 Speech Enhancement from a Signal Subspace Perspective; 1.3 Scope and Organization of the Work; References; 2 General Concept with the Diagonalization of the Speech Correlation Matrix; 2.1 Signal Model and Problem Formulation; 2.2 Linear Filtering with a Rectangular Matrix; 2.3 Performance Measures; 2.3.1 Noise Reduction; 2.3.2 Speech Distortion; 2.3.3 MSE Criterion; 2.4 Optimal Rectangular Filtering Matrices; 2.4.1 Maximum SNR; 2.4.2 Wiener; 2.4.3 MVDR; 2.4.4 Tradeoff. 
505 8 |a 2.4.5 LCMVReferences; 3 General Concept with the Joint Diagonalization of the Speech and Noise Correlation Matrices; 3.1 Signal Model and Problem Formulation; 3.2 Linear Filtering with a Rectangular Matrix; 3.3 Performance Measures; 3.3.1 Noise Reduction; 3.3.2 Speech Distortion; 3.3.3 MSE Criterion; 3.4 Optimal Rectangular Filtering Matrices; 3.4.1 Maximum SNR; 3.4.2 Wiener; 3.4.3 MVDR; 3.4.4 Tradeoff; 3.5 Another Signal Model; References; 4 Single-Channel Speech Enhancement in the Time Domain; 4.1 Signal Model and Problem Formulation; 4.2 Linear Filtering with a Rectangular Matrix. 
505 8 |a 4.3 Performance Measures4.4 Optimal Rectangular Filtering Matrices; 4.5 Single-Channel Noise Reduction Revisited; 4.5.1 Orthogonal Decomposition; 4.5.2 Linear Filtering with a Rectangular Matrix; 4.5.3 Performance Measures; 4.5.4 Optimal Rectangular Filtering Matrices; References; 5 Multichannel Speech Enhancement in the Time Domain; 5.1 Signal Model and Problem Formulation; 5.2 Linear Filtering with a Rectangular Matrix; 5.3 Performance Measures; 5.3.1 Noise Reduction; 5.3.2 Speech Distortion; 5.3.3 MSE Criterion; 5.4 Optimal Rectangular Filtering Matrices; 5.4.1 Maximum SNR; 5.4.2 Wiener. 
505 8 |a 5.4.3 MVDR5.4.4 Tradeoff; 5.4.5 LCMV; References; 6 Multichannel Speech Enhancement in the Frequency Domain; 6.1 Signal Model and Problem Formulation; 6.2 Linear Array Model; 6.3 Performance Measures; 6.3.1 Noise Reduction; 6.3.2 Speech Distortion; 6.3.3 MSE Criterion; 6.4 Optimal Filters; 6.4.1 Maximum SNR; 6.4.2 Wiener; 6.4.3 MVDR; 6.4.4 Tradeoff; 6.4.5 LCMV; References; 7 A Bayesian Approach to the Speech Subspace Estimation; 7.1 Signal Model and Problem Formulation; 7.2 Estimation Based on the Minimum Mean-Square Distance; 7.3 A Closed-Form Solution Based on the Bingham Posterior. 
504 |a References8 Evaluation of the Time-Domain Speech Enhancement Filters; 8.1 Evaluation of Single-Channel Filters; 8.1.1 Rank-Deficient Speech Correlation Matrix; 8.1.2 Full-Rank Speech Correlation Matrix; 8.2 Evaluation of Multichannel Filters; References; Index. 
520 |a Speech enhancement is a classical problem in signal processing, yet still largely unsolved. Two of the conventional approaches for solving this problem are linear filtering, like the classical Wiener filter, and subspace methods. These approaches have traditionally been treated as different classes of methods and have been introduced in somewhat different contexts. Linear filtering methods originate in stochastic processes, while subspace methods have largely been based on developments in numerical linear algebra and matrix approximation theory. This book bridges the gap between the. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Speech processing systems. 
650 0 |a Signal processing. 
650 6 |a Traitement automatique de la parole. 
650 6 |a Traitement du signal. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Signal processing  |2 fast 
650 7 |a Speech processing systems  |2 fast 
700 1 |a Jensen, Jesper Rindom. 
700 1 |a Christensen, Mads Graesboll. 
700 1 |a Chen, J.  |q (Jingdong)  |1 https://id.oclc.org/worldcat/entity/E39PCjF4fk7Kf6ddkvgfPYwX3P 
776 0 8 |i Print version:  |a Benesty, Jacob.  |t Speech Enhancement : A Signal Subspace Perspective.  |d Burlington : Elsevier Science, ©2014  |z 9780128001394 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1590525  |z Texto completo 
936 |a BATCHLOAD 
938 |a Books 24x7  |b B247  |n bke00062184 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1590525 
938 |a EBSCOhost  |b EBSC  |n 683605 
994 |a 92  |b IZTAP