|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn863038967 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
131115s2013 xx ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d MHW
|d EBLCP
|d OCLCQ
|d COO
|d OCLCO
|d OCLCF
|d OCLCQ
|d DEBSZ
|d DEBBG
|d OCLCQ
|d ZCU
|d MERUC
|d OCLCQ
|d UUM
|d ICG
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 1306118484
|q (ebk)
|
020 |
|
|
|a 9781306118484
|q (ebk)
|
020 |
|
|
|a 9781118818428
|q (electronic bk.)
|
020 |
|
|
|a 1118818423
|q (electronic bk.)
|
020 |
|
|
|a 9781118818404
|q (electronic bk.)
|
020 |
|
|
|a 1118818407
|q (electronic bk.)
|
020 |
|
|
|a 9781118818411
|q (ebook)
|
020 |
|
|
|a 1118818415
|q (ebook)
|
020 |
|
|
|a 9781118818435
|q (cloth)
|
020 |
|
|
|a 1118818431
|q (cloth)
|
029 |
1 |
|
|a DEBBG
|b BV041911436
|
029 |
1 |
|
|a DEBBG
|b BV044064670
|
029 |
1 |
|
|a DEBSZ
|b 431562431
|
035 |
|
|
|a (OCoLC)863038967
|
037 |
|
|
|a 543099
|b MIL
|
050 |
|
4 |
|a TJ765
|b .O738 2014eb
|
082 |
0 |
4 |
|a 621.4/2
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Organ, Allan J.
|
245 |
1 |
0 |
|a Stirling Cycle Engines :
|b Inner Workings and Design.
|
260 |
|
|
|b Wiley,
|c 2013.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Stirling Cycle Engines -- Contents -- About the Author -- Foreword -- Preface -- Notation -- 1 Stirling myth -- and Stirling reality -- 1.1 Expectation -- 1.2 Myth by myth -- 1.2.1 That the quarry engine of 1818 developed 2 hp -- 1.2.2 That the limiting efficiency of the stirling engine is that of the Carnot cycle -- 1.2.3 That the 1818 engine operated 'on a principle entirely new' -- 1.2.4 That the invention was catalyzed by Stirlings concern over steam boiler explosions -- 1.2.5 That younger brother James was the true inventor -- 1.2.6 That 90 degrees and unity respectively are acceptable 'default' values for thermodynamic phase angle a and volume ratio K -- 1.2.7 That dead space (un-swept volume) is a necessary evil -- 1.3 and some heresy -- 1.4 Why this crusade? -- 2 Réflexions sur le cicle de Carnot -- 2.1 Background -- 2.2 Carnot re-visited -- 2.3 Isothermal cylinder -- 2.4 Specimen solutions -- 2.5 'Realistic' Carnot cycle -- 2.6 'Equivalent' polytropic index -- 2.7 Réflexions -- 3 What Carnot efficiency? -- 3.1 Epitaph to orthodoxy -- 3.2 Putting Carnot to work -- 3.3 Mean cycle temperature difference, Tx T -- Tw -- 3.4 Net internal loss by inference -- 3.5 Why no p-V diagram for the 'ideal' Stirling cycle? -- 3.6 The way forward -- 4 Equivalence conditions for volume variations -- 4.1 Kinematic configuration -- 4.2 'Additional' dead space -- 4.3 Net swept volume -- 5 The optimum versus optimization -- 5.1 An engine from Turkey rocks the boat -- 5.2 ... and an engine from Duxford -- 5.3 Schmidt on Schmidt -- 5.3.1 Volumetric compression ratio rv -- 5.3.2 Indicator diagram shape -- 5.3.3 More from the re-worked Schmidt analysis -- 5.4 Crank-slider mechanism again -- 5.5 Implications for engine design in general -- 6 Steady-flow heat transfer correlations -- 6.1 Turbulent -- or turbulent? -- 6.2 Eddy dispersion time.
|
505 |
8 |
|
|a 6.3 Contribution from 'inverse modelling' -- 6.4 Contribution from Scaling -- 6.5 What turbulence level? -- 7 A question of adiabaticity -- 7.1 Data -- 7.2 The Archibald test -- 7.3 A contribution from Newton -- 7.4 Variable-volume space -- 7.5 Désaxé -- 7.6 Thermal diffusion -- axi-symmetric case -- 7.7 Convection versus diffusion -- 7.8 Bridging the gap -- 7.9 Interim deductions -- 8 More adiabaticity -- 8.1 'Harmful' dead space -- 8.2 'Equivalent' steady-flow closed-cycle regenerative engine -- 8.3 'Equivalence' -- 8.4 Simulated performance -- 8.5 Conclusions -- 8.6 Solution algorithm -- 9 Dynamic Similarity -- 9.1 Dynamic similarity -- 9.2 Numerical example -- 9.3 Corroboration -- 9.4 Transient response of regenerator matrix -- 9.5 Second-order effects -- 9.6 Application to reality -- 10 Intrinsic Similarity -- 10.1 Scaling and similarity -- 10.2 Scope -- 10.2.1 Independent variables -- 10.2.2 Dependent variables -- 10.2.3 Local, instantaneous Reynolds number Re -- 10.3 First steps -- 10.4 without the computer -- 11 Getting started -- 11.1 Configuration -- 11.2 Slots versus tubes -- 11.3 The 'equivalent' slot -- 11.4 Thermal bottleneck -- 11.5 Available work lost -- conventional arithmetic -- 12 FastTrack gas path design -- 12.1 Introduction -- 12.2 Scope -- 12.3 Numerical example -- 12.4 Interim comment -- 12.5 Rationale behind FastTrack -- 12.6 Alternative start point -- GPU-3 charged with He -- 13 FlexiScale -- 13.1 FlexiScale? -- 13.2 Flow path dimensions -- 13.3 Operating conditions -- 13.4 Regenerator matrix -- 13.5 Rationale behind FlexiScale -- 14 ReScale -- 14.1 Introduction -- 14.2 Worked example step-by-step -- 14.2.1 Tubular exchangers -- 14.2.2 Regenerator -- 14.3 Regenerator matrix -- 14.4 Rationale behind ReScale -- 14.4.1 Tubular exchangers -- 14.4.2 Regenerator.
|
505 |
8 |
|
|a 15 Less steam, more traction -- Stirling engine design without the hot air -- 15.1 Optimum heat exchanger -- 15.2 Algebraic development -- 15.3 Design sequence -- 15.4 Note of caution -- 16 Heat transfer correlations -- from the horses mouth -- 16.1 The time has come -- 16.2 Application to design -- 16.3 Rationale behind correlation parameters RE and XQXE -- 16.3.1 Corroboration from dimensional analysis -- 17 Wire-mesh regenerator -- 'back of envelope' sums -- 17.1 Status quo -- 17.2 Temperature swing -- 17.2.1 Thermal capacity ratio -- 17.3 Aspects of flow design -- 17.4 A thumb-nail sketch of transient response -- 17.4.1 Rationalizations -- 17.4.2 Specimen temperature solutions -- 17.5 Wire diameter -- 17.5.1 Thermal penetration depth -- 17.5.2 Specifying the wire mesh -- 17.6 More on intrinsic similarity -- 18 Son of Schmidt -- 18.1 Situations vacant -- 18.2 Analytical opportunities waiting to be explored -- 18.3 Heat exchange -- arbitrary wall temperature gradient -- 18.4 Defining equations and discretization -- 18.4.1 Ideal gas law -- 18.4.2 Energy equation -- variable-volume spaces -- 18.5 Specimen implementation -- 18.5.1 Authentication -- 18.5.2 Function form -- 18.5.3 Reynolds number in the annular gap -- 18.6 Integration -- 18.7 Specimen temperature solutions -- 19 H2 versus He versus air -- 19.1 Conventional wisdom -- 19.2 Further enquiry -- 19.3 So, why air? -- 20 The 'hot air' engine -- 20.1 In praise of arithmetic -- 20.2 Reynolds number Re in the annular gap -- 20.3 Contact surface temperature in annular gap -- 20.4 Design parameter Ldg -- 20.5 Building a specification -- 20.6 Design step by step -- 20.7 Gas path dimensions -- 20.8 Caveat -- 21 Ultimate Lagrange formulation? -- 21.1 Why a new formulation? -- 21.2 Context -- 21.3 Choice of display -- 21.4 Assumptions -- 21.5 Outline computational strategy -- 21.6 Collision mechanics.
|
505 |
8 |
|
|a 21.7 Boundary and initial conditions -- 21.8 Further computational economies -- 21.9 'Ultimate Lagrange'? -- Appendix 1 The reciprocating Carnot cycle -- Appendix 2 Determination of V2 and V4 -- polytropic processes -- Appendix 3 Design charts -- A.3.1 Raison dêtre -- A.3.2 'Additional' dead space -- A.3.3 Anamorphosis and rectification -- A.3.4 Post-script -- Appendix 4 Kinematics of lever-crank drive -- References -- Name Index -- Subject Index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Stirling engines.
|
650 |
|
0 |
|a Stirling engines
|x Design and construction.
|
650 |
|
6 |
|a Stirling, Moteurs.
|
650 |
|
7 |
|a Stirling engines
|2 fast
|
650 |
|
7 |
|a Stirling engines
|x Design and construction
|2 fast
|
758 |
|
|
|i has work:
|a Stirling Cycle Engines [electronic resource] (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCYVgc68J6BBwVhj3xp3B8C
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9781306118484
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1550551
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1550551
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis26681284
|
994 |
|
|
|a 92
|b IZTAP
|