Cargando…

Celestial Dynamics : Chaoticity and Dynamics of Celestial Systems.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dvorak, Rudolf
Otros Autores: Lhotka, Christoph
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn854977485
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130803s2013 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d IDEBK  |d COO  |d N$T  |d OCLCF  |d U3W  |d OCLCO  |d DEBBG  |d OCLCQ  |d OCLCO  |d ZCU  |d MERUC  |d OCLCQ  |d DEHBZ  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 855906066 
020 |a 9783527651887 
020 |a 3527651888 
029 1 |a AU@  |b 000055910228 
029 1 |a DEBBG  |b BV041907988 
029 1 |a DEBBG  |b BV044177088 
029 1 |a DEBSZ  |b 397609078 
029 1 |a DEBSZ  |b 449376192 
035 |a (OCoLC)854977485  |z (OCoLC)855906066 
050 4 |a QB355 .D384 2013 
082 0 4 |a 521.3 
049 |a UAMI 
100 1 |a Dvorak, Rudolf. 
245 1 0 |a Celestial Dynamics :  |b Chaoticity and Dynamics of Celestial Systems. 
260 |a Hoboken :  |b Wiley,  |c 2013. 
300 |a 1 online resource (323 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Celestial Dynamics; Contents; Preface; 1 Introduction: the Challenge of Science; 2 Hamiltonian Mechanics; 2.1 Hamilton's Equations from Hamiltonian Principle; 2.2 Poisson Brackets; 2.3 Canonical Transformations; 2.4 Hamilton-Jacobi Theory; 2.5 Action-Angle Variables; 3 Numerical and Analytical Tools; 3.1 Mappings; 3.1.1 Simple Examples; 3.1.2 Hadjidemetriou Mapping; 3.2 Lie-Series Numerical Integration; 3.2.1 A Simple Example; 3.3 Chaos Indicators; 3.3.1 Lyapunov Characteristic Exponent; 3.3.2 Fast Lyapunov Indicator; 3.3.3 Mean Exponential Growth Factor of Nearby Orbits. 
505 8 |a 3.3.4 Smaller Alignment Index3.3.5 Spectral Analysis Method; 3.4 Perturbation Theory; 3.4.1 Lie-Transformation Method; 3.4.2 Mapping method; 4 The Stability Problem; 4.1 Review on Different Concepts of Stability; 4.2 Integrable Systems; 4.3 Nearly Integrable Systems; 4.4 Resonance Dynamics; 4.5 KAM Theorem; 4.6 Nekhoroshev Theorem; 4.7 The Froeschlé-Guzzo-Lega Hamiltonian; 5 The Two-Body Problem; 5.1 From Newton to Kepler; 5.2 Unperturbed Kepler Motion; 5.3 Classification of Orbits: Ellipses, Hyperbolae and Parabolae; 5.4 Kepler Equation; 5.5 Complex Description; 5.5.1 The KS-Transformation. 
505 8 |a 5.6 Motion in Space and the Keplerian Elements5.7 Astronomical Determination of the Gravitational Constant; 5.8 Solution of the Kepler Equation; 6 The Restricted Three-Body Problem; 6.1 Set-Up and Formulation; 6.2 Equilibria of the System; 6.3 Motion Close to L4 and L5; 6.4 Motion Close to L1, L2, L3; 6.5 Potential and the Zero Velocity Curves; 6.6 Spatial Restricted Three-Body Problem; 6.7 Tisserand Criterion; 6.8 Elliptic Restricted Three-Body Problem; 6.9 Dissipative Restricted Three-Body Problem; 7 The Sitnikov Problem; 7.1 Circular Case: the MacMillan Problem; 7.1.1 Qualitative Estimates. 
505 8 |a 7.2 Motion of the Planet off the z-Axes7.3 Elliptic Case; 7.3.1 Numerical Results; 7.3.2 Analytical Results; 7.4 The Vrabec Mapping; 7.5 General Sitnikov Problem; 7.5.1 Qualitative Estimates; 7.5.2 Phase Space Structure; 8 Planetary Theory; 8.1 Planetary Perturbation Theory; 8.1.1 A Simple Example; 8.1.2 Principles of Planetary Theory; 8.1.3 The Integration Constants -- the Osculating Elements; 8.1.4 First-Order Perturbation; 8.1.5 Second-Order Perturbation; 8.2 Equations of Motion for n Bodies; 8.2.1 The Virial Theorem; 8.2.2 Reduction to Heliocentric Coordinates. 
505 8 |a 8.3 Lagrange Equations of the Planetary n-Body Problem8.3.1 Legendre Polynomials; 8.3.2 Delaunay Elements; 8.4 The Perturbing Function in Elliptic Orbital Elements; 8.5 Explicit First-Order Planetary Theory for the Osculating Elements; 8.5.1 Perturbation of the Mean Longitude; 8.6 Small Divisors; 8.7 Long-Term Evolution of Our Planetary System; 9 Resonances; 9.1 Mean Motion Resonances in Our Planetary System; 9.1.1 The 13:8 Resonance between Venus and Earth; 9.1.2 The 1:1 Mean Motion Resonance: Trojan Asteroids; 9.2 Method of Laplace-Lagrange; 9.3 Secular Resonances. 
500 |a 9.3.1 Asteroids with Small Inclinations and Eccentricities. 
500 |a Written by an internationally renowned expert author and researcher, this monograph fills the need for a book conveying the sophisticated tools needed to calculate exo-planet motion and interplanetary space flight. It is unique in considering the critical problems of dynamics and stability, making use of the software Mathematica, including supplements for practical use of the formulae. A must-have for astronomers and applied mathematicians alike. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Celestial mechanics. 
650 0 |a Differentiable dynamical systems. 
650 6 |a Mécanique céleste. 
650 6 |a Dynamique différentiable. 
650 7 |a Celestial mechanics  |2 fast 
650 7 |a Differentiable dynamical systems  |2 fast 
700 1 |a Lhotka, Christoph. 
758 |i has work:  |a Celestial dynamics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFCkFMJH3Y9TY647yQG6Td  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Dvorak, Rudolf.  |t Celestial Dynamics : Chaoticity and Dynamics of Celestial Systems.  |d Hoboken : Wiley, ©2013  |z 9783527409778 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1329759  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1329759 
938 |a EBSCOhost  |b EBSC  |n 619952 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26005652 
994 |a 92  |b IZTAP