Cargando…

Stochastic calculus of variations for jump processes /

This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book processes "with jumps"...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ishikawa, Yasushi, 1959 October 1-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, [2013]
Colección:De Gruyter studies in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn851970519
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130706s2013 gw ob 001 0 eng d
010 |z  2013009951 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d OCLCQ  |d IDEBK  |d N$T  |d DEBSZ  |d COO  |d LRU  |d AZU  |d E7B  |d CDX  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCQ  |d DEBBG  |d U3G  |d KZC  |d YKN  |d OCLCQ  |d AZK  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d DEGRU  |d M8D  |d U3W  |d STF  |d WRM  |d NRAMU  |d ICG  |d VTS  |d INT  |d VT2  |d AU@  |d CUY  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d REC  |d UKCRE  |d U9X  |d VLY  |d AUD  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 853654384  |a 893925656  |a 961636052  |a 962648932  |a 988437535  |a 992072431  |a 1037708026  |a 1038598518  |a 1045498897  |a 1153481586  |a 1162260804 
020 |a 9783110282009  |q (electronic bk.) 
020 |a 3110282003  |q (electronic bk.) 
020 |a 9781299721739  |q (MyiLibrary) 
020 |a 1299721737  |q (MyiLibrary) 
020 |a 9783110282016  |q (set) 
020 |a 3110282011  |q (set) 
020 |z 9783110281804  |q (alk. paper) 
020 |z 3110281805  |q (alk. paper) 
024 8 |a 99960716916 
029 1 |a CHBIS  |b 010396778 
029 1 |a CHNEW  |b 000633776 
029 1 |a CHVBK  |b 331233819 
029 1 |a DEBBG  |b BV041912777 
029 1 |a DEBBG  |b BV042348594 
029 1 |a DEBBG  |b BV043034000 
029 1 |a DEBBG  |b BV043776550 
029 1 |a DEBBG  |b BV044172158 
029 1 |a DEBSZ  |b 39746665X 
029 1 |a DEBSZ  |b 421246979 
029 1 |a DEBSZ  |b 423056212 
029 1 |a DEBSZ  |b 472791680 
029 1 |a NZ1  |b 15197851 
029 1 |a NZ1  |b 15899562 
035 |a (OCoLC)851970519  |z (OCoLC)853654384  |z (OCoLC)893925656  |z (OCoLC)961636052  |z (OCoLC)962648932  |z (OCoLC)988437535  |z (OCoLC)992072431  |z (OCoLC)1037708026  |z (OCoLC)1038598518  |z (OCoLC)1045498897  |z (OCoLC)1153481586  |z (OCoLC)1162260804 
050 4 |a QA274.2  |b .I84 2013 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/2  |2 23 
084 |a SK 820  |2 rvk 
049 |a UAMI 
100 1 |a Ishikawa, Yasushi,  |d 1959 October 1-  |1 https://id.oclc.org/worldcat/entity/E39PCjKjWXmMY7QbVMM8TTCmV3 
245 1 0 |a Stochastic calculus of variations for jump processes /  |c Yasushi Ishikawa. 
260 |a Berlin :  |b De Gruyter,  |c [2013] 
300 |a 1 online resource (viii, 266 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematics 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 253-261) and index. 
520 |a This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book processes "with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the c. 
505 0 |a Preface; 0 Introduction; 1 L y processes and It calculus; 1.1 Poisson random measure and L y processes; 1.1.1 L y processes; 1.1.2 Examples of L y processes; 1.1.3 Stochastic integral for a finite variation process; 1.2 Basic materials to SDEs with jumps; 1.2.1 Martingales and semimartingales; 1.2.2 Stochastic integral with respect to semimartingales; 1.2.3 Dolens' exponential and Girsanov transformation; 1.3 It processes with jumps; 2 Perturbations and properties of the probability law; 2.1 Integration-by-parts on Poisson space; 2.1.1 Bismut's method; 2.1.2 Picard's method. 
505 8 |a 3.3.3 The Wiener-Poisson space3.4 Relation with the Malliavin operator; 3.5 Composition on the Wiener-Poisson space (I) -- general theory; 3.5.1 Composition with an element in S'; 3.5.2 Sufficient condition for the composition; 3.6 Smoothness of the density for It processes; 3.6.1 Preliminaries; 3.6.2 Big perturbations; 3.6.3 Concatenation (I); 3.6.4 Concatenation (II) -- the case that (D) may fail; 3.7 Composition on the Wiener-Poisson space (II) -- It processes; 4 Applications; 4.1 Asymptotic expansion of the SDE; 4.1.1 Analysis on the stochastic model. 
505 8 |a 4.1.2 Asymptotic expansion of the density4.1.3 Examples of asymptotic expansions; 4.2 Optimal consumption problem; 4.2.1 Setting of the optimal consumption; 4.2.2 Viscosity solutions; 4.2.3 Regularity of solutions; 4.2.4 Optimal consumption; 4.2.5 Historical sketch; Appendix; Bibliography; List of symbols; Index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Malliavin calculus. 
650 0 |a Calculus of variations. 
650 0 |a Jump processes. 
650 6 |a Calcul de Malliavin. 
650 6 |a Calcul des variations. 
650 6 |a Processus de sauts. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Calculus of variations  |2 fast 
650 7 |a Jump processes  |2 fast 
650 7 |a Malliavin calculus  |2 fast 
758 |i has work:  |a Stochastic calculus of variations for jump processes (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGCwf9Gwpq7MmYhPRmjJym  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ishikawa, Yasushi, 1959 October 1-  |t Stochastic calculus of variations for jump processes.  |d Berlin : De Gruyter, [2013]  |z 3110281805  |w (DLC) 2013009951  |w (OCoLC)842307315 
830 0 |a De Gruyter studies in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1113344  |z Texto completo 
880 8 |6 505-00/(S  |a 2.1.3 Some previous methods2.2 Methods of finding the asymptotic bounds (I); 2.2.1 Markov chain approximation; 2.2.2 Proof of Theorem 2.3; 2.2.3 Proof of lemmas; 2.3 Methods of finding the asymptotic bounds (II); 2.3.1 Polygonal geometry; 2.3.2 Proof of Theorem 2.4; 2.3.3 Example of Theorem 2.4 -- easy cases; 2.4 Summary of short time asymptotic bounds; 2.4.1 Case that μ(dz) is absolutely continuous with respect to the m-dimensional Lebesgue measure dz; 2.4.2 Case that μ(dz) is singular with respect to dz; 2.5 Auxiliary topics; 2.5.1 Marcus'canonical processes. 
880 8 |6 505-00/(S  |a 2.5.2 Absolute continuity of the infinitely divisible laws2.5.3 Chain movement approximation; 2.5.4 Support theorem for canonical processes; 3 Analysis of Wiener-Poisson functionals; 3.1 Calculus of functionals on the Wiener space; 3.1.1 Definition of the Malliavin-Shigekawa derivative Dt; 3.1.2 Adjoint operator δ = D*; 3.2 Calculus of functionals on the Poisson space; 3.2.1 One-dimensional case; 3.2.2 Multidimensional case; 3.2.3 Characterisation of the Poisson space; 3.3 Sobolev space for functionals over the Wiener-Poisson space; 3.3.1 The Wiener space; 3.3.2 The Poisson Space. 
938 |a YBP Library Services  |b YANK  |n 10817666 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25806419 
938 |a EBSCOhost  |b EBSC  |n 604319 
938 |a ebrary  |b EBRY  |n ebr10728875 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1113344 
938 |a Coutts Information Services  |b COUT  |n 25806419 
938 |a De Gruyter  |b DEGR  |n 9783110282009 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25312717 
994 |a 92  |b IZTAP