Relatively hyperbolic groups : intrinsic geometry, algebraic properties, and algorithmic problems /
In this paper we obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows us to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric...
| Clasificación: | Libro Electrónico |
|---|---|
| Autor principal: | |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Providence, R.I. :
American Mathematical Society,
2006.
|
| Colección: | Memoirs of the American Mathematical Society ;
no. 843. |
| Temas: | |
| Acceso en línea: | Texto completo |
| Sumario: | In this paper we obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows us to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. We also introduce and study the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve some natural algorithmic problems. |
|---|---|
| Notas: | "Volume 179, number 843 (second of 5 numbers)." |
| Descripción Física: | 1 online resource (vi, 100 pages) : illustrations |
| Bibliografía: | Includes bibliographical references (pages 97-100). |
| ISBN: | 9781470404444 1470404443 |
| ISSN: | 1947-6221 ; |


