Two classes of Riemannian manifolds whose geodesic flows are integrable /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
©1997.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 619. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Part 1. Liouville manifolds Introduction 1. Local structure of proper Liouville manifolds 2. Global structure of proper Liouville manifolds 3. Proper Liouville manifolds of rank one Appendix. Simply connected manifolds of constant curvature Part 2. Kähler-Liouville manifolds Introduction 1. Local calculus on $M^1$ 2. Summing up the local data 3. Structure of $M-M^1$ 4. Torus action and the invariant hypersurfaces 5. Properties as a toric variety 6. Bundle structure associated with a subset of $\mathcal {A}$ 7. The case where $\#\mathcal {A}=1$ 8. Existence theorem.