|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851086200 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1997 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922964964
|
020 |
|
|
|a 9781470402082
|q (electronic bk.)
|
020 |
|
|
|a 1470402084
|q (electronic bk.)
|
020 |
|
|
|z 0821806408
|q (acid-free paper)
|
020 |
|
|
|z 9780821806401
|q (acid-free paper)
|
029 |
1 |
|
|a AU@
|b 000069468473
|
035 |
|
|
|a (OCoLC)851086200
|z (OCoLC)922964964
|
050 |
|
4 |
|a QA3
|b .A57 no. 619
|a QA614.82
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510 s
|a 516.3/73
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kiyohara, Kazuyoshi,
|d 1954-
|1 https://id.oclc.org/worldcat/entity/E39PCjqM8hpxq9Tp9QRmhWvXQy
|
245 |
1 |
0 |
|a Two classes of Riemannian manifolds whose geodesic flows are integrable /
|c Kazuyoshi Kiyohara.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©1997.
|
300 |
|
|
|a 1 online resource (vii, 143 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 619
|
500 |
|
|
|a "November 1997, volume 130, number 619 (third of 4 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 142-143).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Part 1. Liouville manifolds
|t Introduction
|t 1. Local structure of proper Liouville manifolds
|t 2. Global structure of proper Liouville manifolds
|t 3. Proper Liouville manifolds of rank one
|t Appendix. Simply connected manifolds of constant curvature
|t Part 2. Kähler-Liouville manifolds
|t Introduction
|t 1. Local calculus on $M^1$
|t 2. Summing up the local data
|t 3. Structure of $M-M^1$
|t 4. Torus action and the invariant hypersurfaces
|t 5. Properties as a toric variety
|t 6. Bundle structure associated with a subset of $\mathcal {A}$
|t 7. The case where $\#\mathcal {A}=1$
|t 8. Existence theorem.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geodesic flows.
|
650 |
|
0 |
|a Riemannian manifolds.
|
650 |
|
6 |
|a Flots géodésiques.
|
650 |
|
6 |
|a Variétés de Riemann.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Geodesic flows
|2 fast
|
650 |
|
7 |
|a Riemannian manifolds
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Kiyohara, Kazuyoshi, 1954-
|t Two classes of Riemannian manifolds whose geodesic flows are integrable /
|x 0065-9266
|z 9780821806401
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 619.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114543
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005868
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114543
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843122
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12081618
|
994 |
|
|
|a 92
|b IZTAP
|