Cargando…

Marine Proteins and Peptides : Biological Activities and Applications.

Food proteins and bioactive peptides play a vital role in the growth and development of the body's structural integrity and regulation, as well as having a variety of other functional properties. Land animal-derived food proteins such as collagen and gelatine carry risks of contamination (such...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kim, Se-Kwon
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Wiley, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; List of Contributors; Chapter 1 Marine-derived Peptides: Development and Health Prospects; 1.1 Introduction; 1.2 Development of Marine Peptides; 1.3 Health Benefits of Marine Peptides; 1.4 Conclusion; References; Chapter 2 Bioactive Proteins and Peptides from Macroalgae, Fish, Shellfish and Marine Processing Waste; 2.1 Introduction; 2.2 Macroalgal, Fish and Shellfish Proteins: Potential Sources of Bioactive Hydrolysates and Peptides; 2.2.1 Macroalgal Proteins; 2.2.2 Fish and Shellfish Proteins.
  • 2.3 Enzymatic Hydrolysis of Macroalgal, Fish and Shellfish Processing Waste Proteins: Bioactive Protein Hydrolysates and Peptides2.3.1 In Vitro and In Vivo Cardioprotective Activity; 2.3.2 Oxidative Stress; 2.3.3 Other Biofunctionalities; 2.4 Endogenous Bioactive Peptides from Macroalgae, Fish and Shellfish; 2.5 Bioactive Proteins from Macroalgae, Fish and Shellfish; 2.6 Commercial Products Containing Marine-Derived Bioactive Protein Hydrolysates and Peptides; 2.7 Conclusion; Acknowledgement; References; Chapter 3 Lectins with Varying Specificity and Biological Activity from Marine Bivalves.
  • 3.1 Introduction3.1.1 Bivalves; 3.1.1.1 Mussels; 3.1.1.2 Oysters; 3.1.1.3 Clams; 3.1.1.4 Scallops; 3.1.1.5 Cockles; 3.1.2 Innate Immunity of Invertebrates; 3.1.3 Importance of Bivalve Mollusks; 3.2 Lectins; 3.2.1 Bivalve Lectins; 3.2.1.1 C-type Lectins; 3.2.1.2 Galectins; 3.3 Isolation, Molecular Characterization and Carbohydrate Specificity of Bivalve Lectins; 3.4 Biological Functions of Bivalve Lectins; Acknowledgements; References; Chapter 4 Digestive Enzymes from Marine Sources; 4.1 Introduction; 4.2 Biodiversity and Availability; 4.3 Marine Biocatalysts; 4.3.1 Salt and pH Tolerance.
  • 4.3.2 Barophilicity4.3.3 Cold Adaptivity; 4.4 Digestive Enzymes; 4.4.1 Digestive Proteases; 4.4.1.1 Acid/Aspartyl Proteases; 4.4.1.2 Serine Proteases; 4.4.1.3 Cysteine or Thiol Proteases; 4.4.1.4 Metalloproteinases; 4.5 Lipases; 4.5.1 Phospholipases; 4.5.2 Chitinolytic Enzymes; 4.5.3 Transglutaminase; 4.6 Industrial Applications; References; Chapter 5 Kamaboko Proteins as a Potential Source of Bioactive Substances; 5.1 Introduction; 5.2 Creation of Healthier and Safer Foods; 5.3 Enzymatic Modification of Food Proteins; 5.4 Kamaboko; 5.5 Chemical Properties of Kamaboko.
  • 5.6 Expression of Health the Function of Kamaboko Proteins5.7 Antioxidative Activities of Kamaboko Proteins; 5.8 Angiotensin I-Converting Enzyme-Inhibitory Activities of Kamaboko Proteins; 5.9 Conclusion; References; Chapter 6 Biological Activities of Fish-protein Hydrolysates; 6.1 Introduction; 6.2 Angiotensin I-Converting Enzyme Inhibitors; 6.3 Antioxidative Properties; 6.4 Anticancer Activity; 6.5 Antimicrobial and Antiviral Activity; 6.6 Calcium-Binding Peptides; 6.7 Appetite Suppression; 6.8 Anticoagulant Activity; 6.9 Immunostimulant Activity; 6.10 Hypocholesterolemic Activity.