Cargando…

Generalized vectorization, cross-products, and matrix calculus /

"This book studies the mathematics behind matrix calculus, and the final chapter looks at applications of matrix calculus in statistics and econometrics"--

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Turkington, Darrell A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn821617824
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 121217s2013 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CDX  |d COO  |d CAMBR  |d YDXCP  |d HUH  |d IDEBK  |d UMC  |d OCLCF  |d NLGGC  |d LRU  |d MEU  |d CUS  |d E7B  |d OCLCQ  |d EBLCP  |d DEBSZ  |d SOS  |d UKBOL  |d EUX  |d OCLCQ  |d ZMC  |d OCLCQ  |d DHA  |d OCLCQ  |d MERUC  |d ZCU  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OL$  |d OCLCQ  |d G3B  |d LOA  |d K6U  |d OCLCQ  |d OCLCO  |d OKS  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 828302639  |a 837646008  |a 848654914  |a 874420044  |a 892431441  |a 1107784691  |a 1109952913  |a 1117869721 
020 |a 9781139616768  |q (electronic bk.) 
020 |a 1139616765  |q (electronic bk.) 
020 |a 9781139626064  |q (electronic bk.) 
020 |a 113962606X  |q (electronic bk.) 
020 |a 9781139424400  |q (electronic bk.) 
020 |a 1139424408  |q (electronic bk.) 
020 |a 9781139613040  |q (electronic bk.) 
020 |a 1139613049  |q (electronic bk.) 
020 |z 9781107032002 
020 |z 1107032008 
020 |z 9781283870696 
020 |z 128387069X 
029 1 |a AU@  |b 000050641946 
029 1 |a AU@  |b 000066749670 
029 1 |a DEBSZ  |b 380121964 
029 1 |a NLGGC  |b 355457156 
029 1 |a NZ1  |b 15179382 
029 1 |a AU@  |b 000075721435 
035 |a (OCoLC)821617824  |z (OCoLC)828302639  |z (OCoLC)837646008  |z (OCoLC)848654914  |z (OCoLC)874420044  |z (OCoLC)892431441  |z (OCoLC)1107784691  |z (OCoLC)1109952913  |z (OCoLC)1117869721 
050 4 |a QA188  |b .T8645 2012eb 
072 7 |a MAT  |x 033000  |2 bisacsh 
082 0 4 |a 515/.63  |2 23 
084 |a BUS021000  |2 bisacsh 
049 |a UAMI 
100 1 |a Turkington, Darrell A.,  |e author. 
245 1 0 |a Generalized vectorization, cross-products, and matrix calculus /  |c Darrell A. Turkington. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (xi, 267 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Mathematical prerequisites -- 2. Zero-one matrices -- 3. Elimination and duplication matrices -- 4. Matrix calculus -- 5. New matrix calculus results -- 6. Applications. 
520 |a "This book studies the mathematics behind matrix calculus, and the final chapter looks at applications of matrix calculus in statistics and econometrics"--  |c Provided by publisher 
520 |a "In this chapter we consider elements of matrix algebra, knowledge of which is essential for our future work. This body of mathematics centres around the concepts of Kronecker products and vecs of a matrix. From the elements of a matrix and a matrix the Kronecker product forms a new matrix. The vec operator forms a column vector from the elements of a given matrix by stacking its columns one underneath the other. Several new operators considered in this chapter are derived from these basic operators. The operator which I call the cross product operator takes the sum of Kronecker products formed from submatrices of two given matrices. The rvec operator forms a row vector by stacking the rows of a given matrix alongside each other. The generalized vec operator forms a new matrix from a given matrix by stacking a certain number of its columns, taken as a block, under each other, and the generalized rvec operator forms a new matrix by stacking a certain number of rows, again taken as a block, alongside each other. It is well known that Kronecker products and vecs are intimately connected but this connection also holds for rvec and generalized operators as well. The cross sum operator, as far as I know, is being introduced by this book. As such, I will present several theorems designed to investigate the properties of this operator. The approach I have taken in this book is to list, without proof, well-known properties of the mathematical operator or concept in hand. If, however, I am presenting the properties of a new operator or concept, if I am presenting a property in a different light, or finally if I have something new to say about the concept, then I will give a proof"--  |c Provided by publisher 
588 0 |a Print version record. 
505 0 |a Preface; one Mathematical Prerequisites; 1.1 Introduction; 1.2 Kronecker Products; 1.3 Cross-Product of Matrices; 1.4 Vecs, Rvecs, Generalized Vecs, and Rvecs; 1.4.1 Basic Operators; 1.4.2 Vecs, Rvecs, and the Cross-Product Operator; 1.4.3 Related Operators: Vech and; 1.4.4 Generalized Vecs and Generalized Rvecs; 1.4.5 Generalized Vec Operators and the Cross-Product Operator; two Zero-One Matrices; 2.1 Introduction; 2.2 Selection Matrices and Permutation Matrices; 2.3 The Elementary Matrix; 2.4 The Commutation Matrix; 2.4.1 Commutation Matrices, Kronecker Products, and Vecs. 
505 8 |a 2.4.2 Commutation Matrices and Cross-Products2.5 Generalized Vecs and Rvecs of the Commutation Matrix; 2.5.1 Deriving Results for Generalized Vecs and Rvecs of the Commutation Matrix; 2.5.2 Generalized Vecs and Rvecs of the Commutation Matrix and Cross-Products; 2.5.3; 2.5.4 The Matrix; 2.6 The Matrix; 2.7 Twining Matrices; 2.7.1 Introduction; 2.7.2 Definition and Explicit Expressions for a Twining Matrix; 2.7.3 Twining Matrix and the Commutation Matrix; 2.7.4 Properties of the Twining Matrix .; 2.7.5 Some Special Cases; 2.7.6 Kronecker Products and Twining Matrices; 2.7.7 Generalizations. 
505 8 |a A More General Definition of a Twining Matrix2.7.8 Intertwining Columns of Matrices; Three Elimination and Duplication Matrices; 3.1 Introduction; 3.2 Elimination Matrices; 3.2.1 The Elimination Matrix; 3.2.2 The Elimination Matrix; 3.2.3 The Elimination Matrices and; 3.2.4 The Elimination Matrices; 3.3 Duplication Matrices; 3.3.1 The Duplication Matrix; 3.3.2 The Elimination Matrix and the Duplication Matrix; 3.3.3 The Duplication Matrix; Four Matrix Calculus; 4.1 Introduction; 4.2 Different Concepts of a Derivative of a Matrix with Respect to Another Matrix. 
505 8 |a 4.3 The Commutation Matrix and the Concepts of Matrix Derivatives4.4 Relationships Between the Different Concepts; 4.5 Transformation Principles Between the Concepts; 4.5.1 Concept 1 and Concept 2; 4.5.2 Concept 1 and Concept 3; 4.5.3 Concept 2 and Concept 3; 4.6 Transformation Principle One; 4.7 Transformation Principle Two; 4.8 Recursive Derivatives; Five New Matrix Calculus Results; 5.1 Introduction; 5.2 Concept of a Matrix Derivative Used; 5.3 Some Basic Rules of Matrix Calculus; 5.4 Matrix Calculus Results Involving Generalized Rvecs or Cross-Products. 
505 8 |a 5.5 Matrix Derivatives of Generalized Vecs and Rvecs5.5.1 Introduction; 5.5.2 Large X; Results for Generalized rvecs; Results for Generalized vecs; 5.5.3 Small X; Results for Generalized rvecs; Result for Generalized vecs; 5.6 Matrix Derivatives of Cross-Products; 5.6.1 Basic Cross-Products; 5.6.2 Cross-Products Involving; 5.6.3 Cross-Products Involving; 5.6.4 The Cross-Product; 5.6.5 The Cross-Product; 5.6.6 The Cross-Product; 5.7 Results with Reference to; 5.7.1 Introduction; 5.7.2 Simple Theorems Involving; 5.7.3 Theorems Concerning Derivatives Involving VecA, VechA, and. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Matrices. 
650 0 |a Vector analysis. 
650 6 |a Matrices. 
650 6 |a Analyse vectorielle. 
650 7 |a BUSINESS & ECONOMICS  |x Econometrics.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Vector Analysis.  |2 bisacsh 
650 7 |a Análisis vectorial  |2 embne 
650 7 |a Matrices (Matemáticas)  |2 embne 
650 7 |a Matrices  |2 fast 
650 7 |a Vector analysis  |2 fast 
758 |i has work:  |a Generalized vectorization, cross-products, and matrix calculus (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGk47Rkrr3RgFVHk6QXHfm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Turkington, Darrell A.  |t Generalized vectorization, cross-products, and matrix calculus.  |d Cambridge : Cambridge University Press, 2013  |z 9781107032002  |w (DLC) 2012022017  |w (OCoLC)800444338 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1099947  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33351080 
938 |a Coutts Information Services  |b COUT  |n 24421697  |c 72.28 GBP 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1099947 
938 |a ebrary  |b EBRY  |n ebr10634035 
938 |a EBSCOhost  |b EBSC  |n 508300 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24421697 
938 |a YBP Library Services  |b YANK  |n 9958666 
938 |a YBP Library Services  |b YANK  |n 10194860 
938 |a YBP Library Services  |b YANK  |n 9946173 
938 |a YBP Library Services  |b YANK  |n 10143822 
994 |a 92  |b IZTAP