Loading…

Nonlinear fiber optics /

Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical fi...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Agrawal, G. P. (Govind P.), 1951-
Format: Electronic eBook
Language:Inglés
Published: Burlington : Elsevier Science, 2013.
Edition:5th ed.
Series:Optics and photonics.
Subjects:
Online Access:Texto completo
Table of Contents:
  • Nonlinear Fiber Optics; Copyright; Deditcation; Author Biography; Contents; Preface; 1 Introduction; 1.1 Historical Perspective; 1.2 Fiber Characteristics; 1.2.1 Material and Fabrication; 1.2.2 Fiber Losses; 1.2.3 Chromatic Dispersion; 1.2.4 Polarization-Mode Dispersion; 1.3 Fiber Nonlinearities; 1.3.1 Nonlinear Refraction; 1.3.2 Stimulated Inelastic Scattering; 1.3.3 Importance of Nonlinear Effects; 1.4 Overview; Problems; References; 2 Pulse Propagation in Fibers; 2.1 Maxwell's Equations; 2.2 Fiber Modes; 2.2.1 Eigenvalue Equation; 2.2.2 Single-Mode Condition.
  • 2.2.3 Characteristics of the Fundamental Mode2.3 Pulse-Propagation Equation; 2.3.1 Nonlinear Pulse Propagation; 2.3.2 Higher-Order Nonlinear Effects; 2.3.3 Raman Response Function and its Impact; 2.3.4 Extension to Multimode Fibers; 2.4 Numerical Methods; 2.4.1 Split-Step Fourier Method; 2.4.2 Finite-Difference Methods; Problems; References; 3 Group-Velocity Dispersion; 3.1 Different Propagation Regimes; 3.2 Dispersion-Induced Pulse Broadening; 3.2.1 Gaussian Pulses; 3.2.2 Chirped Gaussian Pulses; 3.2.3 Hyperbolic-Secant Pulses; 3.2.4 Super-Gaussian Pulses; 3.2.5 Experimental Results.
  • 3.3 Third-Order Dispersion3.3.1 Evolution of Chirped Gaussian Pulses; 3.3.2 Broadening Factor; 3.3.3 Arbitrary-Shape Pulses; 3.3.4 Ultrashort-Pulse Measurements; 3.4 Dispersion Management; 3.4.1 GVD-Induced Limitations; 3.4.2 Dispersion Compensation; 3.4.3 Compensation of Third-Order Dispersion; Problems; References; 4 Self-Phase Modulation; 4.1 SPM-Induced Spectral Changes; 4.1.1 Nonlinear Phase Shift; 4.1.2 Changes in Pulse Spectra; 4.1.3 Effect of Pulse Shape and Initial Chirp; 4.1.4 Effect of Partial Coherence; 4.2 Effect of Group-Velocity Dispersion; 4.2.1 Pulse Evolution.
  • 4.2.2 Broadening Factor4.2.3 Optical Wave Breaking; 4.2.4 Experimental Results; 4.2.5 Effect of Third-Order Dispersion; 4.2.6 SPM Effects in Fiber Amplifiers; 4.3 Semianalytic Techniques; 4.3.1 Moment Method; 4.3.2 Variational Method; 4.3.3 Specific Analytic Solutions; 4.4 Higher-Order Nonlinear Effects; 4.4.1 Self-Steepening; 4.4.2 Effect of GVD on Optical Shocks; 4.4.3 Intrapulse Raman Scattering; Problems; References; 5 Optical Solitons; 5.1 Modulation Instability; 5.1.1 Linear Stability Analysis; 5.1.2 Gain Spectrum; 5.1.3 Experimental Results; 5.1.4 Ultrashort Pulse Generation.
  • 5.1.5 Impact on Lightwave Systems5.2 Fiber Solitons; 5.2.1 Inverse Scattering Method; 5.2.2 Fundamental Soliton; 5.2.3 Second and Higher-Order Solitons; 5.2.4 Experimental Confirmation; 5.2.5 Soliton Stability; 5.3 Other Types of Solitons; 5.3.1 Dark Solitons; 5.3.2 Bistable Solitons; 5.3.3 Dispersion-Managed Solitons; 5.3.4 Optical Similaritons; 5.4 Perturbation of Solitons; 5.4.1 Perturbation Methods; 5.4.2 Fiber Losses; 5.4.3 Soliton Amplification; 5.4.4 Soliton Interaction; 5.5 Higher-Order Effects; 5.5.1 Moment Equations for Pulse Parameters; 5.5.2 Third-Order Dispersion; 5.5.3 Self-Steepening.