Loading…

Completely Positive Matrices.

A real matrix is positive semidefinite if it can be decomposed as A=BB'. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB' is known as the c...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Shaked-Monderer, Naomi (Author)
Format: Electronic eBook
Language:Inglés
Published: World Scientific 2003.
Subjects:
Online Access:Texto completo
Table of Contents:
  • Ch. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem
  • ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem
  • ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank?