Completely Positive Matrices.
A real matrix is positive semidefinite if it can be decomposed as A=BB'. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB' is known as the c...
| Cote: | Libro Electrónico |
|---|---|
| Auteur principal: | Shaked-Monderer, Naomi (Auteur) |
| Format: | Électronique eBook |
| Langue: | Inglés |
| Publié: |
World Scientific
2003.
|
| Sujets: | |
| Accès en ligne: | Texto completo |
Documents similaires
-
Completely positive matrices /
par: Berman, Abraham
Publié: (2003) -
Totally positive matrices /
par: Pinkus, Allan, 1946-
Publié: (2010) -
Positive definite matrices /
par: Bhatia, Rajendra, 1952-
Publié: (2007) -
Positive Definite Matrices /
par: Bhatia, Rajendra, 1952-
Publié: (2007) -
Positive definite matrices /
par: Bhatia, Rajendra, 1952-
Publié: (2007)


