Cargando…

Unsteady combustor physics /

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lieuwen, Timothy C. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Cambridge University Press, 2012.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover ; UNSTEADY COMBUSTOR PHYSICS; Title; Copyright; Summary Contents; Detailed Contents; Introduction; References; Overview of the Book; 1 Overview and Basic Equations; 1.1. Thermodynamic Relations in a Multicomponent Perfect Gas; 1.2. Continuity Equation; 1.3. Momentum Equation; 1.4. Species Conservation Equation; 1.5. Energy Equation; 1.6. Nomenclature; 1.6.1. Latin Alphabet; 1.6.2. Greek Alphabet; 1.6.3. Subscripts; 1.6.4. Superscripts; 1.6.5. Other Symbols; Exercises; References; 2 Decomposition and Evolution of Disturbances; 2.1. Descriptions of Flow Perturbations.
  • 2.2. Small-Amplitude Propagation in Uniform, Inviscid Flows2.2.1. Decomposition Approach; 2.2.2. Comments on Decomposition; 2.2.3. Molecular Transport Effects on Decomposition; 2.3. Modal Coupling Processes; 2.3.1. Coupling through Boundary Conditions; 2.3.2. Coupling through Flow Inhomogeneities; 2.3.3. Coupling through Nonlinearities; 2.4. Energy Density and Energy Flux Associated with Disturbance Fields; 2.5. Linear and Nonlinear Stability of Disturbances; 2.5.1. Linearly Stable/Unstable Systems; 2.5.2. Nonlinearly Unstable Systems; 2.5.3. Forced and Limit Cycling Systems.
  • 2.5.3.1. Example: Forced Response of Lightly Damped, Linear Systems2.5.3.2. Example: Limit Cycling Systems; 2.5.3.3. Example: Forced Response of Limit Cycling Systems; 2.5.3.4. Nonlinear Interactions between Multiple Oscillators; Exercises; References; 3 Hydrodynamic Flow Stability I: Introduction; 3.1. Normal Modes in Parallel Flows: Basic Formulation; 3.2. General Results for Temporal Instability; 3.2.1. Necessary Conditions for Temporal Instability; 3.2.2. Growth Rate and Disturbance Propagation Speed Bounds; 3.3. Convective and Absolute Instability.
  • 3.4. Extended Example: Spatial Mixing Layer3.5. Global Stability and Nonparallel Flows; Exercises; References; 4 Hydrodynamic Flow Stability II: Common Combustor Flow Fields; 4.1. Free Shear Layers; 4.1.1. Flow Stability and Unsteady Structure; 4.1.2. Effects of Harmonic Excitation; 4.2. Wakes and Bluff Body Flow Fields; 4.2.1. Parallel Flow Stability Analysis; 4.2.2. Bluff Body Wake; 4.2.3. Separated Shear Layer; 4.2.4. Effects of Harmonic Excitation; 4.3. Jets; 4.3.1. Parallel Flow Stability Analysis; 4.3.2. Constant Density Jet Dynamics; 4.3.3. Effects of Harmonic Excitation.
  • 4.3.4. Jets in Cross Flow4.4. Swirling Jets and Wakes; 4.4.1. Vortex Breakdown; 4.4.2. Swirling Jet and Wake Dynamics; 4.4.3. Effects of Harmonic Excitation; 4.5. Backward-Facing Steps and Cavities; 4.5.1. Parallel Flow Stability Analysis; 4.5.2. Unsteady Flow Structure; 4.8. Exercises; References; 5 Acoustic Wave Propagation I
  • Basic Concepts ; 5.1. Traveling and Standing Waves.