Statistical modelling of molecular descriptors in QSAR/QSPR /
This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Weinheim :
Wiley-Blackwell,
©2012.
|
Colección: | Quantitative and network biology ;
v. 2. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Statistical Modelling of Molecular Descriptors in QSAR/QSPR; Contents; Preface; List of Contributors; 1 Current Modeling Methods Used in QSAR/QSPR; 1.1 Introduction; 1.2 Modeling Methods; 1.2.1 Methods for Regression Problems; 1.2.1.1 Multiple Linear Regression; 1.2.1.2 Partial Least Squares; 1.2.1.3 Feedforward Backpropagation Neural Network; 1.2.1.4 General Regression Neural Network; 1.2.1.5 Gaussian Processes; 1.2.2 Methods for Classification Problems; 1.2.2.1 Logistic Regression; 1.2.2.2 Linear Discriminant Analysis; 1.2.2.3 Decision Tree and Random Forest; 1.2.2.4 k-Nearest Neighbor.
- 1.2.2.5 Probabilistic Neural Network1.2.2.6 Support Vector Machine; 1.3 Software for QSAR Development; 1.3.1 Structure Drawing or File Conversion; 1.3.2 3D Structure Generation; 1.3.3 Descriptor Calculation; 1.3.4 Modeling; 1.3.5 General purpose; 1.4 Conclusion; References; 2 Developing Best Practices for Descriptor-Based Property Prediction: Appropriate Matching of Datasets, Descriptors, Methods, and Expectations; 2.1 Introduction; 2.1.1 Posing the Question; 2.1.2 Validating the Models; 2.1.3 Interpreting the Models; 2.2 Leveraging Experimental Data and Understanding their Limitations.
- 2.3 Descriptors: The Lexicon of QSARs2.3.1 Classical QSAR Descriptors and Uses; 2.3.2 Experimentally Derived Descriptors; 2.3.2.1 Biodescriptors; 2.3.2.2 Descriptors from Spectroscopy/Spectrometry and Microscopy; 2.3.3 0D, 1D and 2D Computational Descriptors; 2.3.4 3D Descriptors and Beyond; 2.3.5 Local Molecular Surface Property Descriptors; 2.3.6 Quantum Chemical Descriptors; 2.4 Machine Learning Methods: The Grammar of QSARs; 2.4.1 Principal Component Analysis; 2.4.2 Factor Analysis.
- 2.4.3 Multidimensional Scaling, Stochastic Proximity Embedding, and Other Nonlinear Dimensionality Reduction Methods2.4.4 Clustering; 2.4.5 Partial Least Squares (PLS); 2.4.6 k-Nearest Neighbors (kNN); 2.4.7 Neural Networks; 2.4.8 Ensemble Models; 2.4.9 Decision Trees and Random Forests; 2.4.10 Kernel Methods; 2.4.11 Ranking Methods; 2.5 Defining Modeling Strategies: Putting It All Together; 2.6 Conclusions; References; 3 Mold2 Molecular Descriptors for QSAR; 3.1 Background; 3.1.1 History of QSAR; 3.1.2 Introduction to QSAR; 3.1.3 Molecular Descriptors: Bridge for QSAR.
- 3.1.3.1 Molecular Descriptors3.1.3.2 Role of Molecular Descriptors; 3.1.3.3 Types of Molecular Descriptors; 3.1.3.4 Calculation of Molecular Descriptors (Software Packages); 3.2 Mold2 Molecular Descriptors; 3.2.1 Description of Mold2 Descriptors; 3.2.1.1 Topological Descriptors; 3.2.1.2 Constitutional Descriptors; 3.2.1.3 Information Content-based Descriptors; 3.2.2 Calculation of Mold2 Descriptors; 3.2.3 Evaluation of Mold2 Descriptors; 3.2.3.1 Information Content by Shannon Entropy Analysis; 3.2.3.2 Correlations between Descriptors; 3.3 QSAR Using Mold2 Descriptors.