Monge Ampère equation : applications to geometry and optimization : NSF-CBMS Conference on the Monge Ampère Equation, Applications to Geometry and Optimization, July 9-13, 1997, Florida Atlantic University /
Call Number: | Libro Electrónico |
---|---|
Corporate Author: | |
Other Authors: | , |
Format: | Electronic Conference Proceeding eBook |
Language: | Inglés |
Published: |
Providence, R.I. :
American Mathematical Society,
©1999.
|
Series: | Contemporary mathematics (American Mathematical Society) ;
v. 226. |
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- A numerical method for the optimal time-continuous mass transport problem and related problems / Jean-David Benamou and Yann Brenier
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03232 On the numerical solution of the problem of reflector design with given far-field scattering data / Luis A. Caffarelli, Sergey A. Kochengin and Vladimir I. Oliker
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03233 Applications of the Monge-Ampère equation and Monge transport problem to meteorology and oceanography / M. J. P. Cullen and R. J. Douglas
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03234 Growth of a sandpile around an obstacle / Mikhail Feldman
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03235 The Monge mass transfer problem and its applications / Wilfrid Gangbo
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03236 Gradient estimates for solutions of nonparametric curvature evolution with prescribed contact angle condition / Bo Guan
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03237 An extension of the Kantorovich norm / Leonid G. Hanin
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03238 Optimal locations and the mass transport problem / Michael McAsey and Libin Mou
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03239 A generalized Monge-Ampère equation arising in compressible flow / Elsa Newman and L. Pamela Cook
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03240 Self-similar solutions of Gauss curvature flows / John Urbas
- http://www.ams.org/conm/226/ http://dx.doi.org/10.1090/conm/226/03241