Organic bionics /
The first reference on this emerging interdisciplinary research area at the interface between materials science and biomedicine is written by pioneers in the field, who address the requirements, current status and future challenges. Focusing on inherently conducting polymers, carbon nanotubes and gr...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
John Wiley & Sons,
2012.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Organic Bionics; Contents; Foreword by Professor Graeme Clark; Acknowledgments; 1 Medical Bionics; 1.1 Medical Bionic Devices; 1.1.1 Electrodes and Electrode Arrays; 1.1.1.1 Bionic Hearing; 1.1.1.2 Bionic Vision; 1.1.1.3 Neural Prosthetic Applications; 1.1.1.4 Vagus Nerve Stimulation (Epilepsy and Pain Management); 1.1.1.5 Transcutaneous Electrical Nerve Stimulation; 1.1.1.6 Cardiovascular Applications; 1.1.1.7 Orthopedic Applications; 1.2 Key Elements of a Medical Bionic Device; 1.2.1 Organic Conductors; 1.2.1.1 Neural Stimulation and Recording.
- 1.2.2 Emerging Areas of Application for Medical Bionics1.2.2.1 Bionics for Peripheral Nerve Injury; 1.2.2.2 Bionics for Damaged or Diseased Muscle; 1.2.3 Outline of the Book; References; 2 Carbon; 2.1 Introduction to Carbon; 2.2 Graphene; 2.2.1 Properties of Graphene; 2.2.1.1 Electronic Properties; 2.2.1.2 Electrochemical Properties; 2.2.1.3 Chemical Properties; 2.2.1.4 Mechanical Properties; 2.3 Carbon Nanotubes; 2.3.1 Synthesis; 2.3.2 Electronic Properties of Carbon Nanotubes; 2.3.3 Electrochemistry of Carbon Nanotubes; 2.3.4 Chemical and Biological Properties of Carbon Nanotubes.
- 2.3.5 Mechanical Properties of Carbon Nanotubes2.4 Summary; References; 3 Organic Conducting Polymers; 3.1 Polypyrrole; 3.2 Polythiophenes; 3.3 Polyanilines; 3.4 Properties of OCPs; 3.4.1 Conducting and Electrochemical Switching Properties; 3.4.2 Electrochemical Switching Properties; 3.4.2.1 Polythiophenes; 3.5 Chemical-Biological Properties; 3.5.1 Polypyrroles; 3.5.2 Polythiophenes; 3.5.3 Polyanilines; 3.6 Mechanical Properties; 3.6.1 Polypyrroles; 3.6.2 Polythiophenes; 3.6.3 Polyanilines; 3.7 Surface Morphology; 3.8 Conclusions; References; 4 Organic Conductors
- Biological Applications.
- 4.1 Carbon Structures for Medical Bionics4.1.1 Carbon-Based Electrodes for Medical Bionics; 4.2 Carbon Nanotubes; 4.2.1 Neural Applications; 4.2.2 Muscle Regeneration; 4.2.3 Bone; 4.2.4 Stem Cells; 4.3 Graphene; 4.3.1 Carbon-Based Drug Delivery Applications; 4.4 Conducting Polymers; 4.4.1 Neural Applications; 4.4.2 Muscle Regeneration; 4.4.3 Bone; 4.4.4 Stem Cells; 4.5 Toxicity; 4.6 Sterilization; 4.6.1 Physical Methods of Sterilization; 4.6.2 Irradiation; 4.6.3 Electron Beam (E-Beam); 4.6.4 Ultraviolet (UV) Light Irradiation; 4.6.4.1 Plasma Sterilization.
- 4.6.5 Chemical Methods of Sterilization4.6.6 Ethylene Oxide (EtO); 4.6.7 Ozone (O3); 4.6.8 Bleach (Sodium Hypochlorite); 4.6.9 Glutaraldehyde and Formaldehyde; 4.6.10 Ortho-Phthalaldehyde (OPA); References; 5 Materials Processing/Device Fabrication; 5.1 Introduction; 5.2 Conducting Polymers; 5.2.1 Blending; 5.2.2 Solution Processing; 5.2.3 Colloidal-Assisted Processing; 5.2.4 Processing with Nanoparticles; 5.2.4.1 Inorganic Particles; 5.2.4.2 Organic Nanoparticles; 5.2.5 Melt Processing; 5.3 Carbon Nanotubes; 5.3.1 Solution Processing; 5.3.2 Surfactant/Polymer-Assisted Processing.