|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn782876910 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
120402s2011 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d OCLCO
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d HKP
|d NTE
|d YDXCP
|d OCLCF
|d IDEBK
|d CAMBR
|d RRP
|d OCLCQ
|d OCLCO
|d OCLCQ
|d CUY
|d MERUC
|d ZCU
|d ICG
|d OCLCQ
|d TKN
|d DKC
|d AU@
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d S9M
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 772400119
|a 780131362
|a 816879603
|a 817928409
|
020 |
|
|
|a 9781139187442
|
020 |
|
|
|a 1139187449
|
020 |
|
|
|a 9781139185134
|q (electronic bk.)
|
020 |
|
|
|a 1139185136
|q (electronic bk.)
|
020 |
|
|
|a 1283378019
|
020 |
|
|
|a 9781283378017
|
020 |
|
|
|a 9780511894671
|q (electronic bk.)
|
020 |
|
|
|a 0511894678
|q (electronic bk.)
|
020 |
|
|
|z 9780521193191
|q (print ;
|q hbk.)
|
020 |
|
|
|z 0521193192
|q (print ;
|q hbk.)
|
020 |
|
|
|z 9780521149273
|q (print ;
|q pbk.)
|
020 |
|
|
|z 0521149274
|q (print ;
|q pbk.)
|
029 |
1 |
|
|a DEBSZ
|b 379324806
|
029 |
1 |
|
|a DEBSZ
|b 445572981
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999927853205765
|
035 |
|
|
|a (OCoLC)782876910
|z (OCoLC)772400119
|z (OCoLC)780131362
|z (OCoLC)816879603
|z (OCoLC)817928409
|
050 |
|
4 |
|a QC151.7
|b .G83 2012eb
|
072 |
|
7 |
|a PHDF
|2 bicssc
|
082 |
0 |
4 |
|a 532.05
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Guazzelli, Élisabeth.
|
245 |
1 |
2 |
|a A Physical Introduction to Suspension Dynamics.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (244 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge Texts in Applied Mathematics ;
|v v. 45
|
505 |
0 |
|
|6 880-01
|a Cover; A Physical Introduction to Suspension Dynamics; Dedication; Title; Copyright; Contents; Preface; Prologue; Part I MICROHYDRODYNAMICS; 1 Basic concepts in viscous flow; 1.1 The fluid dynamic equations; 1.2 Scaling arguments and the Stokes approximation; 1.3 Buoyancy and drag; 1.4 Properties of Stokes flow; 1.4.1 Linearity; 1.4.2 Reversibility; 1.4.3 Instantaneity; 1.4.4 And more ... ; Appendix: Three Stokes-flow theorems; A.1 Minimum energy dissipation; A.2 A corollary: Uniqueness; A.3 Reciprocal theorem; Exercises; 2 One sphere in Stokes flow.
|
505 |
8 |
|
|a 2.1 Three single sphere flows: rotation, translation, straining2.1.1 Rotation; 2.1.2 Translation; 2.1.3 Straining; 2.2 Hydrodynamic force, torque, and stresslet; 2.2.1 Force; 2.2.2 Torque; 2.2.3 Stresslet; 2.2.4 Computing the hydrodynamic force; 2.3 Faxén laws for the sphere; 2.4 A sphere in simple shear flow; Exercises; 3 Toward more sophisticated solution techniques; 3.1 Point force solution; 3.2 Point torque and stresslet; 3.3 Integral representation; 3.4 Multipole representation; 3.5 Resistance matrices; 3.6 Motion of different types of particles; 3.7 Slender-body theory.
|
505 |
8 |
|
|a 3.8 Boundary integral methodExercises; 4 Particle pair interactions; 4.1 A sedimenting pair; The method of reflections; 4.2 A pair in shear; 4.3 Pair lubrication interactions; Two spheres in squeeze flow; 4.4 Stokesian Dynamics; Interlude FROM THE MICROSCOPIC TO THE MACROSCOPIC; 5 A short presentation of statistical and stochastic concepts; 5.1 Statistical physics; 5.2 Averaging concepts; 5.2.1 Ensemble and other averages; 5.2.2 Probability distributions; 5.3 Fluctuational motion; 5.3.1 Random walks and diffusion; 5.3.2 Brownian motion; 5.4 Two routes to diffusive dynamics.
|
505 |
8 |
|
|a 5.4.1 A macroscopic approach: Stokes-Einstein relation and Smoluchowski equation5.4.2 A microscopic approach: Langevin equation; 5.5 Chaotic dynamics; Part II TOWARD A DESCRIPTION OF MACROSCOPIC PHENOMENA IN SUSPENSIONS; 6 Sedimentation; 6.1 One, two, three ... spheres; 6.2 Clusters and clouds; 6.3 Settling of a suspension of spheres; 6.4 Influence of the lateral walls of the vessel: Intrinsic convection; 6.5 Velocity fluctuations and hydrodynamic diffusion; 6.6 Fronts; 6.7 Settling of particles in an inclined vessel: Boycott effect; 6.8 More on polydispersity and anisotropy; 7 Shear flow.
|
505 |
8 |
|
|a 7.1 Suspension viscosity7.1.1 Computing the Einstein viscosity; 7.1.2 First effects of particle interaction on æs; 7.2 Non-Newtonian rheology in suspensions; 7.2.1 Rate and time dependence of viscosity; 7.2.2 Normal stresses in suspensions; 7.2.3 Stress mechanisms; 7.3 Microstructure of sheared suspensions; 7.3.1 Concentrated suspension microstructure; 7.3.2 Smoluchowski theory of suspension microstructure; Equilibrium structure; Scaled Smoluchowski equation; Small Pe; Large Pe; 7.4 Constitutive modeling of suspension stress; 7.5 Irreversible dynamics in shear flow.
|
500 |
|
|
|a 7.5.1 Shear-induced diffusion.
|
520 |
|
|
|a Opens up the field by introducing theoretical, mathematical concepts in physical form through examples.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Fluid dynamics
|x Mathematics.
|
650 |
|
4 |
|a Physics.
|
650 |
|
4 |
|a Science.
|
650 |
|
6 |
|a Dynamique des fluides
|x Mathématiques.
|
650 |
|
7 |
|a Dinámica de fluidos
|x Matemáticas
|2 embne
|
650 |
|
7 |
|a Fluid dynamics
|x Mathematics
|2 fast
|
700 |
1 |
|
|a Morris, Jeffrey F.
|
700 |
1 |
|
|a Pic, Sylvie.
|
758 |
|
|
|i has work:
|a A physical introduction to suspension dynamics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFvmD8BGWbdQjPgWBFp96q
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Guazzelli, Élisabeth.
|t A Physical Introduction to Suspension Dynamics.
|d Cambridge : Cambridge University Press, ©2011
|z 9780521193191
|
830 |
|
0 |
|a Cambridge texts in applied mathematics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=807246
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a 5.4.1 A macroscopic approach: Stokes-Einstein relation and Smoluchowski equation -- 5.4.2 A microscopic approach: Langevin equation -- 5.5 Chaotic dynamics -- Part II TOWARD A DESCRIPTION OF MACROSCOPIC PHENOMENA IN SUSPENSIONS -- 6 Sedimentation -- 6.1 One, two, three ... spheres -- 6.2 Clusters and clouds -- 6.3 Settling of a suspension of spheres -- 6.4 Influence of the lateral walls of the vessel: Intrinsic convection -- 6.5 Velocity fluctuations and hydrodynamic diffusion -- 6.6 Fronts -- 6.7 Settling of particles in an inclined vessel: Boycott effect -- 6.8 More on polydispersity and anisotropy -- 7 Shear flow -- 7.1 Suspension viscosity -- 7.1.1 Computing the Einstein viscosity -- 7.1.2 First effects of particle interaction on μs -- 7.2 Non-Newtonian rheology in suspensions -- 7.2.1 Rate and time dependence of viscosity -- 7.2.2 Normal stresses in suspensions -- 7.2.3 Stress mechanisms -- 7.3 Microstructure of sheared suspensions -- 7.3.1 Concentrated suspension microstructure -- 7.3.2 Smoluchowski theory of suspension microstructure -- Equilibrium structure -- Scaled Smoluchowski equation -- Small Pe -- Large Pe -- 7.4 Constitutive modeling of suspension stress -- 7.5 Irreversible dynamics in shear flow -- 7.5.1 Shear-induced diffusion -- 7.5.2 Shear-induced migration -- Two-fluid analysis -- 7.6 Orientable particles -- 8 Beyond Stokes flow: Finite inertia -- 8.1 Limit of the Stokes approximation -- 8.1.1 Influence of inertia far from a body -- 8.1.2 Oseen solution for a translating sphere -- 8.2 Settling spheres at finite inertia -- 8.3 Migration under dilute conditions in pressure-driven flow -- 8.3.1 Observations -- 8.3.2 Analytical approaches -- 8.4 Particle motion in finite-Re simple-shear flow -- 8.5 Weak-inertia rheology -- Epilogue -- References -- Index.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH22948690
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL807246
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 337801
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7571820
|
994 |
|
|
|a 92
|b IZTAP
|