Essentials of applied mathematics for engineers and scientists /
The second edition of this popular book on practical mathematics for engineers includes new and expanded chapters on perturbation methods and theory. This is a book about linear partial differential equations that are common in engineering and the physical sciences. It will be useful to graduate stu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham, Switzerland :
Springer,
©2012.
|
Edición: | 2nd ed. |
Colección: | Synthesis lectures on mathematics and statistics ;
#12. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Partial differential equations in engineering
- 1.1 Introductory comments
- 1.2 Fundamental concepts
- Problems
- 1.3 The heat conduction (or diffusion) equation
- 1.3.1 Rectangular Cartesian coordinates
- 1.3.2 Cylindrical coordinates
- 1.3.3 Spherical coordinates
- The Laplacian operator
- 1.3.4 Boundary conditions
- 1.4 The vibrating string
- 1.4.1 Boundary conditions
- 1.5 Vibrating membrane
- 1.6 Longitudinal displacements of an elastic bar
- Further reading.
- 2. The Fourier method: separation of variables
- 2.1 Heat conduction
- 2.1.1 Scales and dimensionless variables
- 2.1.2 Separation of variables
- 2.1.3 Superposition
- 2.1.4 Orthogonality
- 2.1.5 Lessons
- Problems
- 2.1.6 Scales and dimensionless variables
- 2.1.7 Separation of variables
- 2.1.8 Choosing the sign of the separation constant
- 2.1.9 Superposition
- 2.1.10 Orthogonality
- 2.1.11 Lessons
- 2.1.12 Scales and dimensionless variables
- 2.1.13 Getting to one nonhomogeneous condition
- 2.1.14 Separation of variables
- 2.1.15 Choosing the sign of the separation constant
- 2.1.16 Superposition
- 2.1.17 Orthogonality
- 2.1.18 Lessons
- 2.1.19 Scales and dimensionless variables
- 2.1.20 Relocating the nonhomogeneity
- 2.1.21 Separating variables
- 2.1.22 Superposition
- 2.1.23 Orthogonality
- 2.1.24 Lessons
- Problems
- 2.2 Vibrations
- 2.2.1 Scales and dimensionless variables
- 2.2.2 Separation of variables
- 2.2.3 Orthogonality
- 2.2.4 Lessons
- Problems
- Further reading.
- 3. Orthogonal sets of functions
- 3.1 Vectors
- 3.1.1 Orthogonality of vectors
- 3.1.2 Orthonormal sets of vectors
- 3.2 Functions
- 3.2.1 Orthonormal sets of functions and Fourier series
- 3.2.2 Best approximation
- 3.2.3 Convergence of Fourier series
- 3.2.4 Examples of Fourier series
- Problems
- 3.3 Sturm-Liouville problems: orthogonal functions
- 3.3.1 Orthogonality of eigenfunctions
- Problems
- Further reading.
- 4. Series solutions of ordinary differential equations
- 4.1 General series solutions
- 4.1.1 Definitions
- 4.1.2 Ordinary points and series solutions
- 4.1.3 Lessons: finding series solutions for differential equations with ordinary points
- Problems
- 4.1.4 Regular singular points and the method of frobenius
- 4.1.5 Lessons: finding series solution for differential equations with regular singular points
- 4.1.6 Logarithms and second solutions
- Problems
- 4.2 Bessel functions
- 4.2.1 Solutions of Bessel's equation
- Here are the rules
- 4.2.2 Fourier-Bessel series
- Problems
- 4.3 Legendre functions
- 4.4 Associated Legendre functions
- Problems
- Further reading.
- 5. Solutions using Fourier series and integrals
- 5.1 Conduction (or diffusion) problems
- 5.1.1 Time-dependent boundary conditions
- 5.2 Vibrations problems
- Problems
- 5.3 Fourier integrals
- Problem
- Further reading.
- 6. Integral transforms: the Laplace transform
- 6.1 The Laplace transform
- 6.2 Some important transforms
- 6.2.1 Exponentials
- 6.2.2 Shifting in the s -domain
- 6.2.3 Shifting in the time domain
- 6.2.4 Sine and cosine
- 6.2.5 Hyperbolic functions
- 6.2.6 Powers of t: tm
- 6.2.7 Heaviside step
- 6.2.8 The Dirac Delta function
- 6.2.9 Transforms of derivatives
- 6.2.10 Laplace transforms of integrals
- 6.2.11 Derivatives of transforms
- 6.3 Linear ordinary differential equations with constant coefficients
- 6.4 Some important theorems
- 6.4.1 Initial value theorem
- 6.4.2 Final value theorem
- 6.4.3 Convolution
- 6.5 Partial fractions
- 6.5.1 Nonrepeating roots
- 6.5.2 Repeated roots
- 6.5.3 Quadratic factors: complex roots
- Problems
- Further reading.
- 7. Complex variables and the Laplace inversion integral
- 7.1 Basic properties
- 7.1.1 Limits and differentiation of complex variables: 7.1.1
- Analytic functions
- Integrals
- 7.1.2 The Cauchy integral formula
- Problems.
- 8. Solutions with Laplace transforms
- 8.1 Mechanical vibrations
- Problems
- 8.2 Diffusion or conduction problems
- Problems
- 8.3 Duhamel's theorem
- Problems
- Further reading.
- 9. Sturm-Liouville transforms
- 9.1 A preliminary example: Fourier sine transform
- 9.2 Generalization: the Sturm-Liouville transform: theory
- 9.3 The inverse transform
- Problems
- Further reading.
- 10. Introduction to perturbation methods
- 10.1 Examples from algebra
- 10.1.1 Regular perturbation
- 10.1.2 Singular perturbation.
- 11. Singular perturbation theory of differential equations.
- Appendix A. The roots of certain transcendental equations
- Appendix B.
- Author's biography.