Cargando…

Essentials of applied mathematics for engineers and scientists /

The second edition of this popular book on practical mathematics for engineers includes new and expanded chapters on perturbation methods and theory. This is a book about linear partial differential equations that are common in engineering and the physical sciences. It will be useful to graduate stu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Watts, Robert G.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham, Switzerland : Springer, ©2012.
Edición:2nd ed.
Colección:Synthesis lectures on mathematics and statistics ; #12.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Partial differential equations in engineering
  • 1.1 Introductory comments
  • 1.2 Fundamental concepts
  • Problems
  • 1.3 The heat conduction (or diffusion) equation
  • 1.3.1 Rectangular Cartesian coordinates
  • 1.3.2 Cylindrical coordinates
  • 1.3.3 Spherical coordinates
  • The Laplacian operator
  • 1.3.4 Boundary conditions
  • 1.4 The vibrating string
  • 1.4.1 Boundary conditions
  • 1.5 Vibrating membrane
  • 1.6 Longitudinal displacements of an elastic bar
  • Further reading.
  • 2. The Fourier method: separation of variables
  • 2.1 Heat conduction
  • 2.1.1 Scales and dimensionless variables
  • 2.1.2 Separation of variables
  • 2.1.3 Superposition
  • 2.1.4 Orthogonality
  • 2.1.5 Lessons
  • Problems
  • 2.1.6 Scales and dimensionless variables
  • 2.1.7 Separation of variables
  • 2.1.8 Choosing the sign of the separation constant
  • 2.1.9 Superposition
  • 2.1.10 Orthogonality
  • 2.1.11 Lessons
  • 2.1.12 Scales and dimensionless variables
  • 2.1.13 Getting to one nonhomogeneous condition
  • 2.1.14 Separation of variables
  • 2.1.15 Choosing the sign of the separation constant
  • 2.1.16 Superposition
  • 2.1.17 Orthogonality
  • 2.1.18 Lessons
  • 2.1.19 Scales and dimensionless variables
  • 2.1.20 Relocating the nonhomogeneity
  • 2.1.21 Separating variables
  • 2.1.22 Superposition
  • 2.1.23 Orthogonality
  • 2.1.24 Lessons
  • Problems
  • 2.2 Vibrations
  • 2.2.1 Scales and dimensionless variables
  • 2.2.2 Separation of variables
  • 2.2.3 Orthogonality
  • 2.2.4 Lessons
  • Problems
  • Further reading.
  • 3. Orthogonal sets of functions
  • 3.1 Vectors
  • 3.1.1 Orthogonality of vectors
  • 3.1.2 Orthonormal sets of vectors
  • 3.2 Functions
  • 3.2.1 Orthonormal sets of functions and Fourier series
  • 3.2.2 Best approximation
  • 3.2.3 Convergence of Fourier series
  • 3.2.4 Examples of Fourier series
  • Problems
  • 3.3 Sturm-Liouville problems: orthogonal functions
  • 3.3.1 Orthogonality of eigenfunctions
  • Problems
  • Further reading.
  • 4. Series solutions of ordinary differential equations
  • 4.1 General series solutions
  • 4.1.1 Definitions
  • 4.1.2 Ordinary points and series solutions
  • 4.1.3 Lessons: finding series solutions for differential equations with ordinary points
  • Problems
  • 4.1.4 Regular singular points and the method of frobenius
  • 4.1.5 Lessons: finding series solution for differential equations with regular singular points
  • 4.1.6 Logarithms and second solutions
  • Problems
  • 4.2 Bessel functions
  • 4.2.1 Solutions of Bessel's equation
  • Here are the rules
  • 4.2.2 Fourier-Bessel series
  • Problems
  • 4.3 Legendre functions
  • 4.4 Associated Legendre functions
  • Problems
  • Further reading.
  • 5. Solutions using Fourier series and integrals
  • 5.1 Conduction (or diffusion) problems
  • 5.1.1 Time-dependent boundary conditions
  • 5.2 Vibrations problems
  • Problems
  • 5.3 Fourier integrals
  • Problem
  • Further reading.
  • 6. Integral transforms: the Laplace transform
  • 6.1 The Laplace transform
  • 6.2 Some important transforms
  • 6.2.1 Exponentials
  • 6.2.2 Shifting in the s -domain
  • 6.2.3 Shifting in the time domain
  • 6.2.4 Sine and cosine
  • 6.2.5 Hyperbolic functions
  • 6.2.6 Powers of t: tm
  • 6.2.7 Heaviside step
  • 6.2.8 The Dirac Delta function
  • 6.2.9 Transforms of derivatives
  • 6.2.10 Laplace transforms of integrals
  • 6.2.11 Derivatives of transforms
  • 6.3 Linear ordinary differential equations with constant coefficients
  • 6.4 Some important theorems
  • 6.4.1 Initial value theorem
  • 6.4.2 Final value theorem
  • 6.4.3 Convolution
  • 6.5 Partial fractions
  • 6.5.1 Nonrepeating roots
  • 6.5.2 Repeated roots
  • 6.5.3 Quadratic factors: complex roots
  • Problems
  • Further reading.
  • 7. Complex variables and the Laplace inversion integral
  • 7.1 Basic properties
  • 7.1.1 Limits and differentiation of complex variables: 7.1.1
  • Analytic functions
  • Integrals
  • 7.1.2 The Cauchy integral formula
  • Problems.
  • 8. Solutions with Laplace transforms
  • 8.1 Mechanical vibrations
  • Problems
  • 8.2 Diffusion or conduction problems
  • Problems
  • 8.3 Duhamel's theorem
  • Problems
  • Further reading.
  • 9. Sturm-Liouville transforms
  • 9.1 A preliminary example: Fourier sine transform
  • 9.2 Generalization: the Sturm-Liouville transform: theory
  • 9.3 The inverse transform
  • Problems
  • Further reading.
  • 10. Introduction to perturbation methods
  • 10.1 Examples from algebra
  • 10.1.1 Regular perturbation
  • 10.1.2 Singular perturbation.
  • 11. Singular perturbation theory of differential equations.
  • Appendix A. The roots of certain transcendental equations
  • Appendix B.
  • Author's biography.