|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn775429107 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
111104s2012 enk o 001 0 eng d |
040 |
|
|
|a COO
|b eng
|e pn
|c COO
|d N$T
|d OCLCQ
|d OCLCF
|d CAMBR
|d JSTOR
|d OCLCQ
|d EBLCP
|d DEBSZ
|d OCLCQ
|d AGLDB
|d ZCU
|d MERUC
|d BNG
|d JBG
|d OCLCQ
|d VTS
|d ICG
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 923220341
|a 929120418
|a 1010991834
|a 1087371918
|a 1264916752
|a 1297457404
|
020 |
|
|
|a 9780883859148
|q (electronic bk.)
|
020 |
|
|
|a 0883859149
|q (electronic bk.)
|
029 |
1 |
|
|a DEBBG
|b BV043076432
|
029 |
1 |
|
|a DEBBG
|b BV043624294
|
029 |
1 |
|
|a DEBSZ
|b 421421215
|
029 |
1 |
|
|a DEBSZ
|b 449725383
|
029 |
1 |
|
|a GBVCP
|b 803884214
|
035 |
|
|
|a (OCoLC)775429107
|z (OCoLC)923220341
|z (OCoLC)929120418
|z (OCoLC)1010991834
|z (OCoLC)1087371918
|z (OCoLC)1264916752
|z (OCoLC)1297457404
|
037 |
|
|
|a 22573/ctt69rhjz
|b JSTOR
|
050 |
|
4 |
|a QA331.7
|
072 |
|
7 |
|a MAT
|x 040000
|2 bisacsh
|
072 |
|
7 |
|a MAT040000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.9
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Krantz, Steven G.
|q (Steven George),
|d 1951-
|1 https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd
|
245 |
1 |
2 |
|a A Guide to Complex Variables /
|c Steven G. Krantz.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Dolciani Mathematical Expositions ;
|v v. 32
|
500 |
|
|
|a Title from publishers bibliographic system (viewed on 30 Jan 2012).
|
505 |
0 |
|
|a A Guide to Complex Variables -- Preface -- Contents -- 1 The Complex Plane -- 1.1 Complex Arithmetic -- 1.1.1 The Real Numbers -- 1.1.2 The Complex Numbers -- 1.1.3 Complex Conjugate -- 1.1.4 Modulus of a Complex Number -- 1.1.5 The Topology of the Complex Plane -- 1.1.6 The Complex Numbers as a Field -- 1.1.7 The Fundamental Theorem of Algebra -- 1.2 The Exponential and Applications -- 1.2.1 The Exponential Function -- 1.2.2 The Exponential Using Power Series -- 1.2.3 Laws of Exponentiation -- 1.2.4 Polar Form of a Complex Number
|
505 |
8 |
|
|a 1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number -- 1.2.7 Fundamental Inequalities -- 1.3 Holomorphic Functions -- 1.3.1 Continuously Differentiable and Ck Functions -- 1.3.2 The Cauchy-Riemann Equations -- 1.3.3 Derivatives -- 1.3.4 Definition of Holomorphic Function -- 1.3.5 The Complex Derivative -- 1.3.6 Alternative Terminology for Holomorphic Functions -- 1.4 Holomorphic and Harmonic Functions -- 1.4.1 Harmonic Functions -- 1.4.2 How They are Related -- 2 Complex Line Integrals -- 2.1 Real and Complex Line Integrals -- 2.1.1 Curves
|
505 |
8 |
|
|a 2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves -- 2.1.4 Integrals on Curves -- 2.1.5 The Fundamental Theorem of Calculus along Curves -- 2.1.6 The Complex Line Integral -- 2.1.7 Properties of Integrals -- 2.2 Complex Differentiabilityand Conformality -- 2.2.1 Limits -- 2.2.2 Holomorphicity and the Complex Derivative -- 2.2.3 Conformality -- 2.3 The Cauchy Integral Formula and Theorem -- 2.3.1 The Cauchy Integral Theorem, Basic Form -- 2.3.2 The Cauchy Integral Formula -- 2.3.3 More General Forms of the Cauchy Theorems -- 2.3.4 Deformability of Curves
|
505 |
8 |
|
|a 2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory -- 3.1 The Derivatives of a Holomorphic Function -- 3.1.1 A Formula for the Derivative -- 3.1.2 The Cauchy Estimates -- 3.1.3 Entire Functions and Liouville�s Theorem -- 3.1.4 The Fundamental Theorem of Algebra -- 3.1.5 Sequences of Holomorphic Functions and their Derivatives -- 3.1.6 The Power Series Representation of a Holomorphic Function -- 3.2 The Zeros of a Holomorphic Function -- 3.2.1 The Zero Set of a Holomorphic Function
|
505 |
8 |
|
|a 3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets -- 3.2.4 Uniqueness of Analytic Continuation -- 4 Isolated Singularities and Laurent Series -- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity -- 4.1.1 Isolated Singularities -- 4.1.2 A Holomorphic Function on a Punctured Domain -- 4.1.3 Classification of Singularities -- 4.1.4 Removable Singularities, Poles, and Essential Singularities -- 4.1.5 The Riemann Removable Singularities Theorem -- 4.1.6 The Casorati-Weierstrass Theorem
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Functions of complex variables.
|
650 |
|
6 |
|a Fonctions d'une variable complexe.
|
650 |
|
7 |
|a MATHEMATICS
|x Complex Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Functions of complex variables
|2 fast
|
758 |
|
|
|i has work:
|a A guide to complex variables (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGgV3XbqpBmW9HXqjyMdHy
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Krantz, Steven G.
|t Guide to Complex Variables.
|d Washington : Mathematical Association of America, ©2014
|z 9780883853382
|
830 |
|
0 |
|a Dolciani mathematical expositions.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330365
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3330365
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 450270
|
994 |
|
|
|a 92
|b IZTAP
|