Cargando…

A Guide to Complex Variables /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krantz, Steven G. (Steven George), 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Dolciani mathematical expositions.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn775429107
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111104s2012 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d N$T  |d OCLCQ  |d OCLCF  |d CAMBR  |d JSTOR  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d BNG  |d JBG  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 923220341  |a 929120418  |a 1010991834  |a 1087371918  |a 1264916752  |a 1297457404 
020 |a 9780883859148  |q (electronic bk.) 
020 |a 0883859149  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043076432 
029 1 |a DEBBG  |b BV043624294 
029 1 |a DEBSZ  |b 421421215 
029 1 |a DEBSZ  |b 449725383 
029 1 |a GBVCP  |b 803884214 
035 |a (OCoLC)775429107  |z (OCoLC)923220341  |z (OCoLC)929120418  |z (OCoLC)1010991834  |z (OCoLC)1087371918  |z (OCoLC)1264916752  |z (OCoLC)1297457404 
037 |a 22573/ctt69rhjz  |b JSTOR 
050 4 |a QA331.7 
072 7 |a MAT  |x 040000  |2 bisacsh 
072 7 |a MAT040000  |2 bisacsh 
082 0 4 |a 515.9 
049 |a UAMI 
100 1 |a Krantz, Steven G.  |q (Steven George),  |d 1951-  |1 https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd 
245 1 2 |a A Guide to Complex Variables /  |c Steven G. Krantz. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Dolciani Mathematical Expositions ;  |v v. 32 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a A Guide to Complex Variables -- Preface -- Contents -- 1 The Complex Plane -- 1.1 Complex Arithmetic -- 1.1.1 The Real Numbers -- 1.1.2 The Complex Numbers -- 1.1.3 Complex Conjugate -- 1.1.4 Modulus of a Complex Number -- 1.1.5 The Topology of the Complex Plane -- 1.1.6 The Complex Numbers as a Field -- 1.1.7 The Fundamental Theorem of Algebra -- 1.2 The Exponential and Applications -- 1.2.1 The Exponential Function -- 1.2.2 The Exponential Using Power Series -- 1.2.3 Laws of Exponentiation -- 1.2.4 Polar Form of a Complex Number 
505 8 |a 1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number -- 1.2.7 Fundamental Inequalities -- 1.3 Holomorphic Functions -- 1.3.1 Continuously Differentiable and Ck Functions -- 1.3.2 The Cauchy-Riemann Equations -- 1.3.3 Derivatives -- 1.3.4 Definition of Holomorphic Function -- 1.3.5 The Complex Derivative -- 1.3.6 Alternative Terminology for Holomorphic Functions -- 1.4 Holomorphic and Harmonic Functions -- 1.4.1 Harmonic Functions -- 1.4.2 How They are Related -- 2 Complex Line Integrals -- 2.1 Real and Complex Line Integrals -- 2.1.1 Curves 
505 8 |a 2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves -- 2.1.4 Integrals on Curves -- 2.1.5 The Fundamental Theorem of Calculus along Curves -- 2.1.6 The Complex Line Integral -- 2.1.7 Properties of Integrals -- 2.2 Complex Differentiabilityand Conformality -- 2.2.1 Limits -- 2.2.2 Holomorphicity and the Complex Derivative -- 2.2.3 Conformality -- 2.3 The Cauchy Integral Formula and Theorem -- 2.3.1 The Cauchy Integral Theorem, Basic Form -- 2.3.2 The Cauchy Integral Formula -- 2.3.3 More General Forms of the Cauchy Theorems -- 2.3.4 Deformability of Curves 
505 8 |a 2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory -- 3.1 The Derivatives of a Holomorphic Function -- 3.1.1 A Formula for the Derivative -- 3.1.2 The Cauchy Estimates -- 3.1.3 Entire Functions and Liouvilleâ€?s Theorem -- 3.1.4 The Fundamental Theorem of Algebra -- 3.1.5 Sequences of Holomorphic Functions and their Derivatives -- 3.1.6 The Power Series Representation of a Holomorphic Function -- 3.2 The Zeros of a Holomorphic Function -- 3.2.1 The Zero Set of a Holomorphic Function 
505 8 |a 3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets -- 3.2.4 Uniqueness of Analytic Continuation -- 4 Isolated Singularities and Laurent Series -- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity -- 4.1.1 Isolated Singularities -- 4.1.2 A Holomorphic Function on a Punctured Domain -- 4.1.3 Classification of Singularities -- 4.1.4 Removable Singularities, Poles, and Essential Singularities -- 4.1.5 The Riemann Removable Singularities Theorem -- 4.1.6 The Casorati-Weierstrass Theorem 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Functions of complex variables. 
650 6 |a Fonctions d'une variable complexe. 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 7 |a Functions of complex variables  |2 fast 
758 |i has work:  |a A guide to complex variables (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGgV3XbqpBmW9HXqjyMdHy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Krantz, Steven G.  |t Guide to Complex Variables.  |d Washington : Mathematical Association of America, ©2014  |z 9780883853382 
830 0 |a Dolciani mathematical expositions. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330365  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330365 
938 |a EBSCOhost  |b EBSC  |n 450270 
994 |a 92  |b IZTAP