|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn773799256 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
120120s2011 si a ob 001 0 eng d |
010 |
|
|
|z 2011275230
|
040 |
|
|
|a YDXCP
|b eng
|e pn
|c YDXCP
|d N$T
|d E7B
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCF
|d IDEBK
|d CDX
|d EBLCP
|d OCLCQ
|d AZK
|d LOA
|d AGLDB
|d MOR
|d PIFPO
|d ZCU
|d OTZ
|d OCLCQ
|d MERUC
|d OCLCQ
|d U3W
|d STF
|d WRM
|d VTS
|d COCUF
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d UKAHL
|d UKCRE
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
016 |
7 |
|
|a 015960134
|2 Uk
|
019 |
|
|
|a 778314623
|a 817056786
|a 824106844
|a 877767902
|a 961492903
|a 962667875
|a 966194810
|a 988441814
|a 992108823
|a 994959446
|a 1037795543
|a 1038676119
|a 1055379899
|a 1064185392
|a 1081218781
|a 1153519248
|
020 |
|
|
|a 9814360740
|q (electronic bk.)
|
020 |
|
|
|a 9789814360746
|q (electronic bk.)
|
020 |
|
|
|a 1283433990
|
020 |
|
|
|a 9781283433990
|
020 |
|
|
|z 9789814360739
|
020 |
|
|
|z 9814360732
|
029 |
1 |
|
|a AU@
|b 000051369297
|
029 |
1 |
|
|a DEBBG
|b BV043098980
|
029 |
1 |
|
|a DEBBG
|b BV044161615
|
029 |
1 |
|
|a DEBSZ
|b 372745121
|
029 |
1 |
|
|a DEBSZ
|b 405243596
|
029 |
1 |
|
|a DEBSZ
|b 421458992
|
029 |
1 |
|
|a DEBSZ
|b 454996829
|
029 |
1 |
|
|a NZ1
|b 15491710
|
035 |
|
|
|a (OCoLC)773799256
|z (OCoLC)778314623
|z (OCoLC)817056786
|z (OCoLC)824106844
|z (OCoLC)877767902
|z (OCoLC)961492903
|z (OCoLC)962667875
|z (OCoLC)966194810
|z (OCoLC)988441814
|z (OCoLC)992108823
|z (OCoLC)994959446
|z (OCoLC)1037795543
|z (OCoLC)1038676119
|z (OCoLC)1055379899
|z (OCoLC)1064185392
|z (OCoLC)1081218781
|z (OCoLC)1153519248
|
050 |
|
4 |
|a QA403
|b .H37 2011
|
072 |
|
7 |
|a MAT
|x 016000
|2 bisacsh
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
082 |
0 |
4 |
|a 515.2433
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Harmonic analysis method for nonlinear evolution equations, I /
|c Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo.
|
260 |
|
|
|a Singapore ;
|a Hackensack, NJ :
|b World Scientific,
|c ©2011.
|
300 |
|
|
|a 1 online resource (xiv, 283 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 269-280) and index.
|
505 |
0 |
|
|a 1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff.
|
520 |
|
|
|a This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Harmonic analysis.
|
650 |
|
0 |
|a Differential equations, Nonlinear.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
2 |
|a Fourier Analysis
|
650 |
|
6 |
|a Analyse harmonique.
|
650 |
|
6 |
|a Équations différentielles non linéaires.
|
650 |
|
6 |
|a Analyse mathématique.
|
650 |
|
7 |
|a MATHEMATICS
|x Infinity.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Nonlinear
|2 fast
|
650 |
|
7 |
|a Harmonic analysis
|2 fast
|
650 |
|
7 |
|a Mathematical analysis
|2 fast
|
700 |
1 |
|
|a Wang, Baoxiang.
|
700 |
1 |
|
|a Huo, Zhaohui.
|
700 |
1 |
|
|a Guo, Zihua.
|
700 |
1 |
|
|a Hao, Chengchun.
|
758 |
|
|
|i has work:
|a Harmonic analysis method for nonlinear evolution equations, I (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCYhRCG7PmMQqFwFc4hqwBX
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9789814360739
|z 9814360732
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=840682
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25565386
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 23887117
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL840682
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10524626
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 426417
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 343399
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7073970
|
994 |
|
|
|a 92
|b IZTAP
|