Cargando…

Harmonic analysis method for nonlinear evolution equations, I /

This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wang, Baoxiang, Huo, Zhaohui, Guo, Zihua, Hao, Chengchun
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn773799256
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 120120s2011 si a ob 001 0 eng d
010 |z  2011275230 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d N$T  |d E7B  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d IDEBK  |d CDX  |d EBLCP  |d OCLCQ  |d AZK  |d LOA  |d AGLDB  |d MOR  |d PIFPO  |d ZCU  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d COCUF  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d UKCRE  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
016 7 |a 015960134  |2 Uk 
019 |a 778314623  |a 817056786  |a 824106844  |a 877767902  |a 961492903  |a 962667875  |a 966194810  |a 988441814  |a 992108823  |a 994959446  |a 1037795543  |a 1038676119  |a 1055379899  |a 1064185392  |a 1081218781  |a 1153519248 
020 |a 9814360740  |q (electronic bk.) 
020 |a 9789814360746  |q (electronic bk.) 
020 |a 1283433990 
020 |a 9781283433990 
020 |z 9789814360739 
020 |z 9814360732 
029 1 |a AU@  |b 000051369297 
029 1 |a DEBBG  |b BV043098980 
029 1 |a DEBBG  |b BV044161615 
029 1 |a DEBSZ  |b 372745121 
029 1 |a DEBSZ  |b 405243596 
029 1 |a DEBSZ  |b 421458992 
029 1 |a DEBSZ  |b 454996829 
029 1 |a NZ1  |b 15491710 
035 |a (OCoLC)773799256  |z (OCoLC)778314623  |z (OCoLC)817056786  |z (OCoLC)824106844  |z (OCoLC)877767902  |z (OCoLC)961492903  |z (OCoLC)962667875  |z (OCoLC)966194810  |z (OCoLC)988441814  |z (OCoLC)992108823  |z (OCoLC)994959446  |z (OCoLC)1037795543  |z (OCoLC)1038676119  |z (OCoLC)1055379899  |z (OCoLC)1064185392  |z (OCoLC)1081218781  |z (OCoLC)1153519248 
050 4 |a QA403  |b .H37 2011 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
082 0 4 |a 515.2433  |2 22 
049 |a UAMI 
245 0 0 |a Harmonic analysis method for nonlinear evolution equations, I /  |c Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (xiv, 283 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 269-280) and index. 
505 0 |a 1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff. 
520 |a This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Harmonic analysis. 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Mathematical analysis. 
650 2 |a Fourier Analysis 
650 6 |a Analyse harmonique. 
650 6 |a Équations différentielles non linéaires. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Harmonic analysis  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
700 1 |a Wang, Baoxiang. 
700 1 |a Huo, Zhaohui. 
700 1 |a Guo, Zihua. 
700 1 |a Hao, Chengchun. 
758 |i has work:  |a Harmonic analysis method for nonlinear evolution equations, I (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYhRCG7PmMQqFwFc4hqwBX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789814360739  |z 9814360732 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=840682  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565386 
938 |a Coutts Information Services  |b COUT  |n 23887117 
938 |a EBL - Ebook Library  |b EBLB  |n EBL840682 
938 |a ebrary  |b EBRY  |n ebr10524626 
938 |a EBSCOhost  |b EBSC  |n 426417 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 343399 
938 |a YBP Library Services  |b YANK  |n 7073970 
994 |a 92  |b IZTAP