Cargando…

Semi-Riemannian Geometry with Applications to Relativity.

This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: O'neill, Barrett
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier, 1983.
Colección:Pure and Applied Mathematics, v. 103.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn476222356
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 091207s1983 vtu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d MHW  |d OCLCQ  |d FEM  |d MERUC  |d OCLCQ  |d VLY  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 968085290  |a 969058033 
020 |a 9780080570570  |q (electronic bk.) 
020 |a 0080570577  |q (electronic bk.) 
029 1 |a AU@  |b 000070586517 
035 |a (OCoLC)476222356  |z (OCoLC)968085290  |z (OCoLC)969058033 
037 |a 9155048012494415128  |b TotalBoox  |f Ebook only  |n www.totalboox.com 
050 4 |a QA3.P8 vol. 103QA649  |a QA3 QA649 
082 0 4 |a 510 s516.373  |a 510 s 516.3/73 19  |a 516.373 
049 |a UAMI 
100 1 |a O'neill, Barrett. 
245 1 0 |a Semi-Riemannian Geometry with Applications to Relativity. 
260 |a Burlington :  |b Elsevier,  |c 1983. 
300 |a 1 online resource (483 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
490 1 |a Pure and Applied Mathematics, v. 103 
520 |a This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as phys. 
505 0 |a Front Cover; SEMI-RIEMANNIAN GEOMETRY; Copyright Page; CONTENTS; Preface; Notation and Terminology; CHAPTER 1. MANIFOLD THEORY; CHAPTER 2. TENSORS; CHAPTER 3. SEMI-RIEMANNIAN MANIFOLDS; CHAPTER 4. SEMI-RIEMANNIAN SUBMANIFOLDS; CHAPTER 5. RIEMANNIAN AND LORENTZ GEOMETRY; CHAPTER 6. SPECIAL RELATIVITY; CHAPTER 7. CONSTRUCTIONS; CHAPTER 8. SYMMETRY AND CONSTANT CURVATURE; CHAPTER 9. ISOMETRIES; CHAPTER 10. CALCULUS OF VARIATIONS; CHAPTER 11. HOMOGENEOUS AND SYMMETRIC SPACES; CHAPTER 12. GENERAL RELATIVITY; COSMOLOGY; CHAPTER 13. SCHWARZSCHILD GEOMETRY; CHAPTER 14. CAUSALITY IN LORENTZ MANIFOLDS. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Riemannian. 
650 0 |a Manifolds (Mathematics) 
650 0 |a Calculus of tensors. 
650 0 |a Relativity (Physics) 
650 4 |a Calculus of tensors. 
650 4 |a Manifolds (Mathematics) 
650 4 |a Relativity (Physics) 
650 4 |a Geometry, Riemannian. 
650 6 |a Géométrie de Riemann. 
650 6 |a Variétés (Mathématiques) 
650 6 |a Calcul tensoriel. 
650 6 |a Relativité (Physique) 
650 7 |a Calculus of tensors  |2 fast 
650 7 |a Geometry, Riemannian  |2 fast 
650 7 |a Manifolds (Mathematics)  |2 fast 
650 7 |a Relativity (Physics)  |2 fast 
776 1 |z 9780125267403 
830 0 |a Pure and Applied Mathematics, v. 103. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=405289  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL405289 
994 |a 92  |b IZTAP