|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn476222356 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn|---||||| |
008 |
091207s1983 vtu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d MHW
|d OCLCQ
|d FEM
|d MERUC
|d OCLCQ
|d VLY
|d OCLCO
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 968085290
|a 969058033
|
020 |
|
|
|a 9780080570570
|q (electronic bk.)
|
020 |
|
|
|a 0080570577
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000070586517
|
035 |
|
|
|a (OCoLC)476222356
|z (OCoLC)968085290
|z (OCoLC)969058033
|
037 |
|
|
|a 9155048012494415128
|b TotalBoox
|f Ebook only
|n www.totalboox.com
|
050 |
|
4 |
|a QA3.P8 vol. 103QA649
|a QA3 QA649
|
082 |
0 |
4 |
|a 510 s516.373
|a 510 s 516.3/73 19
|a 516.373
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a O'neill, Barrett.
|
245 |
1 |
0 |
|a Semi-Riemannian Geometry with Applications to Relativity.
|
260 |
|
|
|a Burlington :
|b Elsevier,
|c 1983.
|
300 |
|
|
|a 1 online resource (483 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|2 rda
|
490 |
1 |
|
|a Pure and Applied Mathematics, v. 103
|
520 |
|
|
|a This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as phys.
|
505 |
0 |
|
|a Front Cover; SEMI-RIEMANNIAN GEOMETRY; Copyright Page; CONTENTS; Preface; Notation and Terminology; CHAPTER 1. MANIFOLD THEORY; CHAPTER 2. TENSORS; CHAPTER 3. SEMI-RIEMANNIAN MANIFOLDS; CHAPTER 4. SEMI-RIEMANNIAN SUBMANIFOLDS; CHAPTER 5. RIEMANNIAN AND LORENTZ GEOMETRY; CHAPTER 6. SPECIAL RELATIVITY; CHAPTER 7. CONSTRUCTIONS; CHAPTER 8. SYMMETRY AND CONSTANT CURVATURE; CHAPTER 9. ISOMETRIES; CHAPTER 10. CALCULUS OF VARIATIONS; CHAPTER 11. HOMOGENEOUS AND SYMMETRIC SPACES; CHAPTER 12. GENERAL RELATIVITY; COSMOLOGY; CHAPTER 13. SCHWARZSCHILD GEOMETRY; CHAPTER 14. CAUSALITY IN LORENTZ MANIFOLDS.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometry, Riemannian.
|
650 |
|
0 |
|a Manifolds (Mathematics)
|
650 |
|
0 |
|a Calculus of tensors.
|
650 |
|
0 |
|a Relativity (Physics)
|
650 |
|
4 |
|a Calculus of tensors.
|
650 |
|
4 |
|a Manifolds (Mathematics)
|
650 |
|
4 |
|a Relativity (Physics)
|
650 |
|
4 |
|a Geometry, Riemannian.
|
650 |
|
6 |
|a Géométrie de Riemann.
|
650 |
|
6 |
|a Variétés (Mathématiques)
|
650 |
|
6 |
|a Calcul tensoriel.
|
650 |
|
6 |
|a Relativité (Physique)
|
650 |
|
7 |
|a Calculus of tensors
|2 fast
|
650 |
|
7 |
|a Geometry, Riemannian
|2 fast
|
650 |
|
7 |
|a Manifolds (Mathematics)
|2 fast
|
650 |
|
7 |
|a Relativity (Physics)
|2 fast
|
776 |
1 |
|
|z 9780125267403
|
830 |
|
0 |
|a Pure and Applied Mathematics, v. 103.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=405289
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL405289
|
994 |
|
|
|a 92
|b IZTAP
|