Chargement en cours…

Ultrametric Banach algebras /

In this volume, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebra, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Escassut, Alain
Format: Électronique eBook
Langue:Inglés
Publié: Singapore ; River Edge, NJ : World Scientific, 2003.
Sujets:
Accès en ligne:Texto completo
Description
Résumé:In this volume, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebra, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras. The spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebra, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{t}[x], the absolute values extending the Gauss norm from K{t} to A are defined by the elements of the Shilov boundary of A.
Description matérielle:1 online resource (xiii, 275 pages)
Bibliographie:Includes bibliographical references (pages 265-267) and index.
ISBN:9789812775603
9812775609
1281928267
9781281928269
9786611928261
661192826X