Ultrametric Banach algebras /
In this volume, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebra, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras...
| Cote: | Libro Electrónico |
|---|---|
| Auteur principal: | |
| Format: | Électronique eBook |
| Langue: | Inglés |
| Publié: |
Singapore ; River Edge, NJ :
World Scientific,
2003.
|
| Sujets: | |
| Accès en ligne: | Texto completo |
| Résumé: | In this volume, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebra, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras. The spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebra, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{t}[x], the absolute values extending the Gauss norm from K{t} to A are defined by the elements of the Shilov boundary of A. |
|---|---|
| Description matérielle: | 1 online resource (xiii, 275 pages) |
| Bibliographie: | Includes bibliographical references (pages 265-267) and index. |
| ISBN: | 9789812775603 9812775609 1281928267 9781281928269 9786611928261 661192826X |


