Cargando…

Learning with kernels : support vector machines, regularization, optimization, and beyond /

In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schölkopf, Bernhard
Otros Autores: Smola, Alexander J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2002.
Colección:Adaptive computation and machine learning.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocm53833203
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 031204s2002 maua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d N$T  |d COCUF  |d E7B  |d OCLCQ  |d IEEEE  |d ZCU  |d OCLCF  |d COO  |d NNM  |d DKDLA  |d FVL  |d OCLCQ  |d NLGGC  |d OCLCQ  |d EBLCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d MOR  |d PIFBR  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d MERER  |d OCLCQ  |d ICG  |d CUY  |d OCLCQ  |d VT2  |d AU@  |d OCLCQ  |d MITPR  |d WYU  |d LEAUB  |d DKC  |d OCLCQ  |d UKCRE  |d VLY  |d OCLCO  |d OCLCQ  |d COA  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 270933921  |a 474286555  |a 474750346  |a 646747528  |a 722664901  |a 728046383  |a 888832392  |a 961590572  |a 962562811  |a 988442091  |a 991983972  |a 1037934695  |a 1038570059  |a 1045472870  |a 1055390983  |a 1064763588  |a 1081268807  |a 1153471173  |a 1162064116  |a 1163736816  |a 1228599161  |a 1286909800  |a 1340061331 
020 |a 9780262256933  |q (electronic bk.) 
020 |a 0262256932  |q (electronic bk.) 
020 |a 0585477590  |q (electronic bk.) 
020 |a 9780585477596  |q (electronic bk.) 
020 |a 9780262194754  |q (alk. paper) 
020 |a 0262194759  |q (alk. paper) 
029 1 |a AU@  |b 000051284530 
029 1 |a AU@  |b 000051377826 
029 1 |a AU@  |b 000053251382 
029 1 |a DEBBG  |b BV042508880 
029 1 |a DEBBG  |b BV044105288 
029 1 |a DEBSZ  |b 422440833 
029 1 |a GBVCP  |b 79943339X 
029 1 |a NZ1  |b 11772976 
029 1 |a AU@  |b 000075710796 
029 1 |a AU@  |b 000075829050 
029 1 |a AU@  |b 000075873338 
035 |a (OCoLC)53833203  |z (OCoLC)270933921  |z (OCoLC)474286555  |z (OCoLC)474750346  |z (OCoLC)646747528  |z (OCoLC)722664901  |z (OCoLC)728046383  |z (OCoLC)888832392  |z (OCoLC)961590572  |z (OCoLC)962562811  |z (OCoLC)988442091  |z (OCoLC)991983972  |z (OCoLC)1037934695  |z (OCoLC)1038570059  |z (OCoLC)1045472870  |z (OCoLC)1055390983  |z (OCoLC)1064763588  |z (OCoLC)1081268807  |z (OCoLC)1153471173  |z (OCoLC)1162064116  |z (OCoLC)1163736816  |z (OCoLC)1228599161  |z (OCoLC)1286909800  |z (OCoLC)1340061331 
037 |a 4175  |b MIT Press 
037 |a 9780262256933  |b MIT Press 
050 4 |a Q325.5  |b .S32 2002eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
049 |a UAMI 
100 1 |a Schölkopf, Bernhard. 
245 1 0 |a Learning with kernels :  |b support vector machines, regularization, optimization, and beyond /  |c Bernhard Schölkopf, Alexander J. Smola. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2002. 
300 |a 1 online resource (xviii, 626 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
490 1 |a Adaptive computation and machine learning 
504 |a Includes bibliographical references (pages 591-616) and index. 
588 0 |a Print version record. 
505 0 |a Series Foreword; Preface; 1 -- A Tutorial Introduction; I -- Concepts and Tools; 2 -- Kernels; 3 -- Risk and Loss Functions; 4 -- Regularization; 5 -- Elements of Statistical Learning Theory; 6 -- Optimization; II -- Support Vector Machines; 7 -- Pattern Recognition; 8 -- Single-Class Problems: Quantile Estimation and Novelty Detection; 9 -- Regression Estimation; 10 -- Implementation; 11 -- Incorporating Invariances; 12 -- Learning Theory Revisited; III -- Kernel Methods; 13 -- Designing Kernels; 14 -- Kernel Feature Extraction; 15 -- Kernel Fisher Discriminant; 16 -- Bayesian Kernel Methods. 
505 8 |a 17 -- Regularized Principal Manifolds18 -- Pre-Images and Reduced Set Methods; A -- Addenda; B -- Mathematical Prerequisites; References; Index; Notation and Symbols. 
520 |a In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs -- -kernels--for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning. 
650 0 |a Algorithms. 
650 0 |a Kernel functions. 
650 2 |a Algorithms 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes. 
650 6 |a Noyaux (Mathématiques) 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Algorithms  |2 fast 
650 7 |a Kernel functions  |2 fast 
650 7 |a Machine learning  |2 fast 
650 1 7 |a Machine-learning.  |2 gtt 
650 1 7 |a Vectorcomputers.  |0 (NL-LeOCL)095992553  |2 gtt 
653 |a COMPUTER SCIENCE/Machine Learning & Neural Networks 
700 1 |a Smola, Alexander J. 
758 |i has work:  |a Learning with Kernels (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG4DrM6Bydf6fyPQpqxRXb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Schölkopf, Bernhard.  |t Learning with kernels.  |d Cambridge, Mass. : MIT Press, ©2002  |z 0262194759  |w (DLC) 2001095750  |w (OCoLC)48970254 
830 0 |a Adaptive computation and machine learning. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3338886  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3338886 
938 |a EBSCOhost  |b EBSC  |n 78092 
938 |a YBP Library Services  |b YANK  |n 3201026 
994 |a 92  |b IZTAP