Cargando…

Answer Set Programming for Continuous Domains: A Fuzzy Logic Approach

Answer set programming (ASP) is a declarative language tailored towards solving combinatorial optimization problems. It has been successfully applied to e.g. planning problems, configuration and verification of software, diagnosis and database repairs. However, ASP is not directly suitable for model...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Janssen, Jeroen (Autor), Schockaert, Steven (Autor), Vermeir, Dirk (Autor), De Cock, Martine (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Paris : Atlantis Press : Imprint: Atlantis Press, 2012.
Edición:1st ed. 2012.
Colección:Atlantis Computational Intelligence Systems, 5
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-94-91216-59-6
003 DE-He213
005 20220118032404.0
007 cr nn 008mamaa
008 120425s2012 fr | s |||| 0|eng d
020 |a 9789491216596  |9 978-94-91216-59-6 
024 7 |a 10.2991/978-94-91216-59-6  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Janssen, Jeroen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Answer Set Programming for Continuous Domains: A Fuzzy Logic Approach  |h [electronic resource] /  |c by Jeroen Janssen, Steven Schockaert, Dirk Vermeir, Martine De Cock. 
250 |a 1st ed. 2012. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2012. 
300 |a X, 174 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Computational Intelligence Systems,  |x 2215-1710 ;  |v 5 
505 0 |a Introduction -- Preliminaries -- Fuzzy Answer Set Programming -- Aggregated Fuzzy Answer Set Programming -- Core Fuzzy Answer Set Programming -- Reducing FASP to Fuzzy SAT -- Conclusions. 
520 |a Answer set programming (ASP) is a declarative language tailored towards solving combinatorial optimization problems. It has been successfully applied to e.g. planning problems, configuration and verification of software, diagnosis and database repairs. However, ASP is not directly suitable for modeling problems with continuous domains. Such problems occur naturally in diverse fields such as the design of gas and electricity networks, computer vision and investment portfolios. To overcome this problem we study FASP, a combination of ASP with fuzzy logic -- a class of manyvalued logics that can handle continuity. We specifically focus on the following issues: 1. An important question when modeling continuous optimization problems is how we should handle overconstrained problems, i.e. problems that have no solutions. In many cases we can opt to accept an imperfect solution, i.e. a solution that does not satisfy all the stated rules (constraints). However, this leads to the question: what imperfect solutions should we choose? We investigate this question and improve upon the state-of-the-art by proposing an approach based on aggregation functions. 2. Users of a programming language often want a rich language that is easy to model in. However, implementers and theoreticians prefer a small language that is easy to implement and reason about. We create a bridge between these two desires by proposing a small core language for FASP and by showing that this language is capable of expressing many of its common extensions such as constraints, monotonically decreasing functions, aggregators, S-implicators and classical negation. 3. A well-known technique for solving ASP consists of translating a program P to a propositional theory whose models exactly correspond to the answer sets of P. We show how this technique can be generalized to FASP, paving the way to implement efficient fuzzy answer set solvers that can take advantage of existing fuzzy reasoners. 
650 0 |a Computer science. 
650 0 |a Logic design. 
650 0 |a Computer simulation. 
650 0 |a Logic. 
650 1 4 |a Computer Science Logic and Foundations of Programming. 
650 2 4 |a Logic Design. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Logic. 
700 1 |a Schockaert, Steven.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vermeir, Dirk.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a De Cock, Martine.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789462390416 
776 0 8 |i Printed edition:  |z 9789491216602 
776 0 8 |i Printed edition:  |z 9789491216589 
830 0 |a Atlantis Computational Intelligence Systems,  |x 2215-1710 ;  |v 5 
856 4 0 |u https://doi.uam.elogim.com/10.2991/978-94-91216-59-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)