Cargando…

Geometric Partial Differential Equations

This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Par...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Chambolle, Antonin (Editor ), Novaga, Matteo (Editor ), Valdinoci, Enrico (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2013.
Edición:1st ed. 2013.
Colección:CRM Series, 15
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • N. Alikakos: On the structure of phase transition maps for three or more coexisting phases
  • S. Amato, G. Bellettini, M. Paolini: The nonlinear multidomain model: a new formal asymptotic analysis
  • A. Chambolle, M. Goldman, M. Novaga: Existence and qualitative properties of isoperimetric sets in periodic media
  • A. Chambolle, M. Morini, M. Ponsiglione: Minimizing movements and level set approach to geometric flow of nonlocal perimeters
  • S. Choi, I. Kim: Homogenization with oscillatory Neumann boundary data in general domain
  • D. Christodoulou: The Analysis of Shock Formation in 3-Dimensional Fluids
  • L. Dupaigne, A. Farina, B. Sirakov: Regularity of the extremal solutions for the Liouville system
  • M.-H. Giga, Y. Giga, A. Nakayasu: On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force
  • Y. Giga, G. Pisante: On representation of boundary integrals involving the mean curvature for mean-convex domains
  • A. Lemenant, Y. Sire: Elliptic problem in nonsmooth domain, Reifenberg-flat domains, Regularity
  • A. Pisante: Maximally localized wannier functions: existence and exponential localization
  • A. Stancu: Flows by powers of centro-affine curvature.