Cargando…

Quantum Isometry Groups

This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the "quantum isometry group", highlighting the interaction of noncommutative geometry and quantum groups, which is a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Goswami, Debashish (Autor), Bhowmick, Jyotishman (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Springer India : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Infosys Science Foundation Series in Mathematical Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-81-322-3667-2
003 DE-He213
005 20220114124003.0
007 cr nn 008mamaa
008 170105s2016 ii | s |||| 0|eng d
020 |a 9788132236672  |9 978-81-322-3667-2 
024 7 |a 10.1007/978-81-322-3667-2  |2 doi 
050 4 |a QA614-614.97 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 514.74  |2 23 
100 1 |a Goswami, Debashish.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantum Isometry Groups  |h [electronic resource] /  |c by Debashish Goswami, Jyotishman Bhowmick. 
250 |a 1st ed. 2016. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2016. 
300 |a XXVIII, 235 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Infosys Science Foundation Series in Mathematical Sciences,  |x 2364-4044 
505 0 |a Chapter 1. Introduction -- Chapter 2. Preliminaries -- Chapter 3. Classical and Noncommutative Geometry -- Chapter 4. Definition and Existence of Quantum Isometry Groups -- Chapter 5. Quantum Isometry Groups of Classical and Quantum -- Chapter 6. Quantum Isometry Groups of Discrete Quantum Spaces -- Chapter 7. Nonexistence of Genuine Smooth CQG Actions on Classical Connected Manifolds -- Chapter 8. Deformation of Spectral Triples and Their Quantum Isometry Groups -- Chapter 9. More Examples and Computations -- Chapter 10. Spectral Triples and Quantum Isometry Groups on Group C*-Algebras. 
520 |a This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the "quantum isometry group", highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommutative generalization of the notion of group of isometry of a classical Riemannian manifold. The motivation for this generalization is the importance of isometry groups in both mathematics and physics. The framework consists of Alain Connes' "noncommutative geometry" and the operator-algebraic theory of "quantum groups". The authors prove the existence of quantum isometry group for noncommutative manifolds given by spectral triples under mild conditions and discuss a number of methods for computing them. One of the most striking and profound findings is the non-existence of non-classical quantum isometry groups for arbitrary classical connected compact manifolds and, by using this, the authors explicitly describe quantum isometry groups of most of the noncommutative manifolds studied in the literature. Some physical motivations and possible applications are also discussed. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Mathematical physics. 
650 0 |a Geometry, Differential. 
650 0 |a Functional analysis. 
650 0 |a Quantum physics. 
650 1 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Quantum Physics. 
700 1 |a Bhowmick, Jyotishman.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132236658 
776 0 8 |i Printed edition:  |z 9788132236665 
776 0 8 |i Printed edition:  |z 9788132238829 
830 0 |a Infosys Science Foundation Series in Mathematical Sciences,  |x 2364-4044 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-81-322-3667-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)