Cargando…

Handling Missing Data in Ranked Set Sampling

The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bouza-Herrera, Carlos N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-39899-5
003 DE-He213
005 20220120235755.0
007 cr nn 008mamaa
008 131004s2013 gw | s |||| 0|eng d
020 |a 9783642398995  |9 978-3-642-39899-5 
024 7 |a 10.1007/978-3-642-39899-5  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Bouza-Herrera, Carlos N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Handling Missing Data in Ranked Set Sampling  |h [electronic resource] /  |c by Carlos N. Bouza-Herrera. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 116 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-5458 
505 0 |a Preface -- Missing Observations and Data Quality Improvement -- Sampling Using Ranked Sets: Basic Concepts -- The Non Response  Problem: Sub-sampling among the Non Respondents -- Imputation of the Missing Data -- Some Numerical Studies of the Behavior of RSS. 
520 |a The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments. 
650 0 |a Statistics . 
650 0 |a Biometry. 
650 0 |a Social sciences-Statistical methods. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Biostatistics. 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642399008 
776 0 8 |i Printed edition:  |z 9783642398988 
830 0 |a SpringerBriefs in Statistics,  |x 2191-5458 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-39899-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)