Cargando…

Explicit Nonlinear Model Predictive Control Theory and Applications /

Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Grancharova, Alexandra (Autor), Johansen, Tor Arne (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Control and Information Sciences, 429
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-28780-0
003 DE-He213
005 20220118205755.0
007 cr nn 008mamaa
008 120321s2012 gw | s |||| 0|eng d
020 |a 9783642287800  |9 978-3-642-28780-0 
024 7 |a 10.1007/978-3-642-28780-0  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Grancharova, Alexandra.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Explicit Nonlinear Model Predictive Control  |h [electronic resource] :  |b Theory and Applications /  |c by Alexandra Grancharova, Tor Arne Johansen. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XIV, 234 p. 66 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 ;  |v 429 
505 0 |a Multi-parametric Programming -- Nonlinear Model Predictive Control -- Explicit NMPC Using mp-QP Approximations of mp-NLP -- Explicit NMPC via Approximate mp-NLP -- Explicit MPC of Constrained Nonlinear Systems with Quantized Inputs -- Explicit Min-Max MPC of Constrained Nonlinear Systems with Bounded Uncertainties -- Explicit Stochastic NMPC -- Explicit NMPC Based on Neural Network Models -- Semi-Explicit Distributed NMPC. 
520 |a Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; Ø  Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; Ø  Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); Ø  Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.  . 
650 0 |a Control engineering. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Nonlinear Optics. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Applied Dynamical Systems. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Nonlinear Optics. 
700 1 |a Johansen, Tor Arne.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642287794 
776 0 8 |i Printed edition:  |z 9783642287817 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 ;  |v 429 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-28780-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-LNI 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)