Chargement en cours…

Bayesian Methods in Structural Bioinformatics

This book is an edited volume, the goal of which is to provide an overview of the current state-of-the-art in statistical methods applied to problems in structural bioinformatics (and in particular protein structure prediction, simulation, experimental structure determination and analysis). It focus...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Collectivité auteur: SpringerLink (Online service)
Autres auteurs: Hamelryck, Thomas (Éditeur intellectuel), Mardia, Kanti (Éditeur intellectuel), Ferkinghoff-Borg, Jesper (Éditeur intellectuel)
Format: Électronique eBook
Langue:Inglés
Publié: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Édition:1st ed. 2012.
Collection:Statistics for Biology and Health,
Sujets:
Accès en ligne:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-27225-7
003 DE-He213
005 20220116005459.0
007 cr nn 008mamaa
008 120322s2012 gw | s |||| 0|eng d
020 |a 9783642272257  |9 978-3-642-27225-7 
024 7 |a 10.1007/978-3-642-27225-7  |2 doi 
050 4 |a QH323.5 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 570.15195  |2 23 
245 1 0 |a Bayesian Methods in Structural Bioinformatics  |h [electronic resource] /  |c edited by Thomas Hamelryck, Kanti Mardia, Jesper Ferkinghoff-Borg. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XXII, 386 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 2197-5671 
505 0 |a Part I Foundations: An Overview of Bayesian Inference and Graphical Models -- Monte Carlo Methods for Inferences in High-dimensional Systems -- Part II Energy Functions for Protein Structure Prediction: On the Physical Relevance and Statistical Interpretation of Knowledge based Potentials -- Statistical Machine Learning of Protein Energetics from Experimentally Observed Structures -- A Statistical View on the Reference Ratio Method -- Part III Directional Statistics and Shape Theory: Statistical Modelling and Simulation Using the Fisher-Bingham Distribution -- Statistics of Bivariate von Mises Distributions -- Bayesian Hierarchical Alignment Methods -- Likelihood and Empirical Bayes Superpositions of Multiple Macromolecular Structures -- Part IV Graphical models for structure prediction: Probabilistic Models of Local Biomolecular Structure and their Application in Structural Simulation -- Prediction of Low Energy Protein Side Chain Configurations Using Markov Random Fields -- Part V Inferring Structure from Experimental Data -- Inferential Structure Determination from NMR Data -- Bayesian Methods in SAXS and SANS Structure Determination. 
520 |a This book is an edited volume, the goal of which is to provide an overview of the current state-of-the-art in statistical methods applied to problems in structural bioinformatics (and in particular protein structure prediction, simulation, experimental structure determination and analysis). It focuses on statistical methods that have a clear interpretation in the framework of statistical physics, rather than ad hoc, black box methods based on neural networks or support vector machines. In addition, the emphasis is on methods that deal with biomolecular structure in atomic detail. The book is highly accessible, and only assumes background knowledge on protein structure, with a minimum of mathematical knowledge. Therefore, the book includes introductory chapters that contain a solid introduction to key topics such as Bayesian statistics and concepts in machine learning and statistical physics. 
650 0 |a Biometry. 
650 0 |a Medicine-Research. 
650 0 |a Biology-Research. 
650 0 |a Biophysics. 
650 0 |a Biomathematics. 
650 0 |a Bioinformatics. 
650 1 4 |a Biostatistics. 
650 2 4 |a Biomedical Research. 
650 2 4 |a Biophysics. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Computational and Systems Biology. 
700 1 |a Hamelryck, Thomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mardia, Kanti.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ferkinghoff-Borg, Jesper.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642439889 
776 0 8 |i Printed edition:  |z 9783642272264 
776 0 8 |i Printed edition:  |z 9783642272240 
830 0 |a Statistics for Biology and Health,  |x 2197-5671 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-27225-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)