A Theory of Branched Minimal Surfaces
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautifu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2012.
|
Edición: | 1st ed. 2012. |
Colección: | Springer Monographs in Mathematics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1.Introduction
- 2.Higher order Derivatives of Dirichlets' Energy
- 3.Very Special Case; The Theorem for n + 1 Even and m + 1 Odd
- 4.The First Main Theorem; Non-Exceptional Branch Points
- 5.The Second Main Theorem: Exceptional Branch Points; The Condition k > l
- 6.Exceptional Branch Points Without The Condition k > l
- 7.New Brief Proofs of the Gulliver-Osserman-Royden Theorem
- 8.Boundary Branch Points
- Scholia
- Appendix
- Bibliography.