Cargando…

Finsler Geometry An Approach via Randers Spaces /

"Finsler Geometry: An Approach via Randers Spaces" exclusively deals with a special class of Finsler metrics -- Randers metrics, which are defined as the sum of a Riemannian metric and a 1-form. Randers metrics derive from the research on General Relativity Theory and have been applied in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cheng, Xinyue (Autor), Shen, Zhongmin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-24888-7
003 DE-He213
005 20220119144752.0
007 cr nn 008mamaa
008 130129s2012 gw | s |||| 0|eng d
020 |a 9783642248887  |9 978-3-642-24888-7 
024 7 |a 10.1007/978-3-642-24888-7  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Cheng, Xinyue.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Finsler Geometry  |h [electronic resource] :  |b An Approach via Randers Spaces /  |c by Xinyue Cheng, Zhongmin Shen. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Randers Spaces -- Randers Metrics and Geodesics -- Randers Metrics of Isotropic S-Curvature -- Riemann Curvature and Ricci Curvature -- Projective Geometry of Randers Spaces -- Randers Metrics with Special Riemann Curvature Properties -- Randers Metrics of Weakly Isotropic Flag Curvature.-Projectively Flat Randers Metrics -- Conformal Geometry of Randers Metrics -- Dually Flat Randers Metrics. 
520 |a "Finsler Geometry: An Approach via Randers Spaces" exclusively deals with a special class of Finsler metrics -- Randers metrics, which are defined as the sum of a Riemannian metric and a 1-form. Randers metrics derive from the research on General Relativity Theory and have been applied in many areas of the natural sciences. They can also be naturally deduced as the solution of the Zermelo navigation problem. The book provides readers not only with essential findings on Randers metrics but also the core ideas and methods which are useful in Finsler geometry. It will be of significant interest to researchers and practitioners working in Finsler geometry, even in differential geometry or related natural fields. Xinyue Cheng is a Professor at the School of Mathematics and Statistics of Chongqing University of Technology, China. Zhongmin Shen is a Professor at the Department of Mathematical Sciences of Indiana University Purdue University, USA. 
650 0 |a Geometry, Differential. 
650 0 |a Geometry. 
650 0 |a Mathematical physics. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Shen, Zhongmin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642248870 
776 0 8 |i Printed edition:  |z 9783642248894 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-24888-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)