Cargando…

Music Recommendation and Discovery The Long Tail, Long Fail, and Long Play in the Digital Music Space /

With so much more music available these days, traditional ways of finding music have diminished. Today radio shows are often programmed by large corporations that create playlists drawn from a limited pool of tracks. Similarly, record stores have been replaced by big-box retailers that have ever-shr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Celma, Òscar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-13287-2
003 DE-He213
005 20220126132239.0
007 cr nn 008mamaa
008 100907s2010 gw | s |||| 0|eng d
020 |a 9783642132872  |9 978-3-642-13287-2 
024 7 |a 10.1007/978-3-642-13287-2  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
100 1 |a Celma, Òscar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Music Recommendation and Discovery  |h [electronic resource] :  |b The Long Tail, Long Fail, and Long Play in the Digital Music Space /  |c by Òscar Celma. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XVI, 194 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Recommendation Problem -- Music Recommendation -- The Long Tail in Recommender Systems -- Evaluation Metrics -- Network-Centric Evaluation -- User-Centric Evaluation -- Applications -- Conclusions and Further Research. 
520 |a With so much more music available these days, traditional ways of finding music have diminished. Today radio shows are often programmed by large corporations that create playlists drawn from a limited pool of tracks. Similarly, record stores have been replaced by big-box retailers that have ever-shrinking music departments. Instead of relying on DJs, record-store clerks or their friends for music recommendations, listeners are turning to machines to guide them to new music. In this book, Òscar Celma guides us through the world of automatic music recommendation. He describes how music recommenders work, explores some of the limitations seen in current recommenders, offers techniques for evaluating the effectiveness of music recommendations and demonstrates how to build effective recommenders by offering two real-world recommender examples. He emphasizes the user's perceived quality, rather than the system's predictive accuracy when providing recommendations, thus allowing users to discover new music by exploiting the long tail of popularity and promoting novel and relevant material ("non-obvious recommendations"). In order to reach out into the long tail, he needs to weave techniques from complex network analysis and music information retrieval. Aimed at final-year-undergraduate and graduate students working on recommender systems or music information retrieval, this book presents the state of the art of all the different techniques used to recommend items, focusing on the music domain as the underlying application. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Computer science-Mathematics. 
650 0 |a Discrete mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Music. 
650 1 4 |a Information Storage and Retrieval. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Music. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642132865 
776 0 8 |i Printed edition:  |z 9783642439537 
776 0 8 |i Printed edition:  |z 9783642132889 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-13287-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)