Cargando…

Mutational Analysis A Joint Framework for Cauchy Problems in and Beyond Vector Spaces /

Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lorenz, Thomas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Mathematics, 1996
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-12471-6
003 DE-He213
005 20220117233924.0
007 cr nn 008mamaa
008 100601s2010 gw | s |||| 0|eng d
020 |a 9783642124716  |9 978-3-642-12471-6 
024 7 |a 10.1007/978-3-642-12471-6  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Lorenz, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mutational Analysis  |h [electronic resource] :  |b A Joint Framework for Cauchy Problems in and Beyond Vector Spaces /  |c by Thomas Lorenz. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XIV, 509 p. 57 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1996 
505 0 |a Extending Ordinary Differential Equations to Metric Spaces: Aubin's Suggestion -- Adapting Mutational Equations to Examples in Vector Spaces: Local Parameters of Continuity -- Less Restrictive Conditions on Distance Functions: Continuity Instead of Triangle Inequality -- Introducing Distribution-Like Solutions to Mutational Equations -- Mutational Inclusions in Metric Spaces. 
520 |a Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear structure. This book generalizes ordinary differential equations beyond the borders of vector spaces with a focus on the well-posed Cauchy problem in finite time intervals. Here are some of the examples: - Feedback evolutions of compact subsets of the Euclidean space - Birth-and-growth processes of random sets (not necessarily convex) - Semilinear evolution equations - Nonlocal parabolic differential equations - Nonlinear transport equations for Radon measures - A structured population model - Stochastic differential equations with nonlocal sample dependence and how they can be coupled in systems immediately - due to the joint framework of Mutational Analysis. Finally, the book offers new tools for modelling. 
650 0 |a Mathematical analysis. 
650 0 |a Functions of real variables. 
650 0 |a Dynamical systems. 
650 0 |a Differential equations. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Differential Equations. 
650 2 4 |a Systems Theory, Control . 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642124709 
776 0 8 |i Printed edition:  |z 9783642124723 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1996 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-12471-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)