Cargando…

Neural Networks and Micromechanics

Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - mat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kussul, Ernst (Autor), Baidyk, Tatiana (Autor), Wunsch, Donald C. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-02535-8
003 DE-He213
005 20220117083330.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642025358  |9 978-3-642-02535-8 
024 7 |a 10.1007/978-3-642-02535-8  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Kussul, Ernst.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neural Networks and Micromechanics  |h [electronic resource] /  |c by Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a X, 221 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Classical Neural Networks -- Neural Classifiers -- Permutation Coding Technique for Image Recognition System -- Associative-Projective Neural Networks (APNNs) -- Recognition of Textures, Object Shapes, and Handwritten Words -- Hardware for Neural Networks -- Micromechanics -- Applications of Neural Networks in Micromechanics -- Texture Recognition in Micromechanics -- Adaptive Algorithms Based on Technical Vision. 
520 |a Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - material, energy, space consumption, equipment, and maintenance - decrease with the scaling down of equipment sizes. To obtain really inexpensive production, labor costs must be reduced to almost zero. For this purpose, fully automated microfactories will be developed. To create fully automated microfactories, we propose using arti?cial neural networks having different structures. The simplest perceptron-like neural network can be used at the lowest levels of microfactory control systems. Adaptive Critic Design, based on neural network models of the microfactory objects, can be used for manufacturing process optimization, while associative-projective neural n- works and networks like ART could be used for the highest levels of control systems. We have examined the performance of different neural networks in traditional image recognition tasks and in problems that appear in micromechanical manufacturing. We and our colleagues also have developed an approach to mic- equipment creation in the form of sequential generations. Each subsequent gene- tion must be of a smaller size than the previous ones and must be made by previous generations. Prototypes of ?rst-generation microequipment have been developed and assessed. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition systems. 
650 0 |a Mechanical engineering. 
650 0 |a Manufactures. 
650 0 |a Computer vision. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Mechanical Engineering. 
650 2 4 |a Machines, Tools, Processes. 
650 2 4 |a Computer Vision. 
650 2 4 |a Control, Robotics, Automation. 
700 1 |a Baidyk, Tatiana.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wunsch, Donald C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642025365 
776 0 8 |i Printed edition:  |z 9783642426117 
776 0 8 |i Printed edition:  |z 9783642025341 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-02535-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)