Cargando…

Hybrid Self-Organizing Modeling Systems

The Group Method of Data Handling (GMDH) is a typical inductive modeling method that is built on principles of self-organization for modeling complex systems. However, it is known to often under-perform on non-parametric regression tasks, while time series modeling GMDH exhibits a tendency to find v...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Onwubolu, Godfrey C. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 211
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-01530-4
003 DE-He213
005 20220114234724.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642015304  |9 978-3-642-01530-4 
024 7 |a 10.1007/978-3-642-01530-4  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Hybrid Self-Organizing Modeling Systems  |h [electronic resource] /  |c edited by Godfrey C. Onwubolu. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XX, 282 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 211 
505 0 |a Hybrid Computational Intelligence and GMDH Systems -- Hybrid Genetic Programming and GMDH System: STROGANOFF -- Hybrid Genetic Algorithm and GMDH System -- Hybrid Differential Evolution and GMDH Systems -- Hybrid Particle Swarm Optimization and GMDH System -- GAME - Hybrid Self-Organizing Modeling System Based on GMDH. 
520 |a The Group Method of Data Handling (GMDH) is a typical inductive modeling method that is built on principles of self-organization for modeling complex systems. However, it is known to often under-perform on non-parametric regression tasks, while time series modeling GMDH exhibits a tendency to find very complex polynomials that cannot model well future, unseen oscillations of the series. In order to alleviate these problems, GMDH has been recently hybridized with some computational intelligence (CI) techniques resulting in more robust and flexible hybrid intelligent systems for solving complex, real-world problems. The central theme of this book is to present in a very clear manner hybrids of some computational intelligence techniques and GMDH approach. The hybrids discussed in the book include GP-GMDH (Genetic Programming-GMDH) algorithm, GA-GMDH (Genetic Algorithm-GMDH) algorithm, DE-GMDH (Differential Evolution-GMDH) algorithm, and PSO-GMDH (Particle Swarm Optimization) algorithm. Also included is the description of the recently introduced GAME (Group Adaptive Models Evolution algorithm. The hybrid character of models and their self-organizing ability give these hybrid self-organizing modeling systems an advantage over standard data mining models. The modeling and data mining solutions of several real-life problems in the areas of engineering, bioinformatics, finance, and economics are presented in the chapters. The book will benefit amongst others, people who are working in the areas of neural networks, machine learning, artificial intelligence, complex system modeling and analysis, and optimization. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a System theory. 
650 0 |a Mathematics. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Complex Systems. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Onwubolu, Godfrey C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642015311 
776 0 8 |i Printed edition:  |z 9783642015298 
776 0 8 |i Printed edition:  |z 9783642101823 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 211 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-01530-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)