Motivated Reinforcement Learning Curious Characters for Multiuser Games /
Motivated learning is an emerging research field in artificial intelligence and cognitive modelling. Computational models of motivation extend reinforcement learning to adaptive, multitask learning in complex, dynamic environments - the goal being to understand how machines can develop new skills an...
Call Number: | Libro Electrónico |
---|---|
Main Authors: | , |
Corporate Author: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2009.
|
Edition: | 1st ed. 2009. |
Subjects: | |
Online Access: | Texto Completo |
Table of Contents:
- Non-Player Characters and Reinforcement Learning
- Non-Player Characters in Multiuser Games
- Motivation in Natural and Artificial Agents
- Towards Motivated Reinforcement Learning
- Comparing the Behaviour of Learning Agents
- Developing Curious Characters Using Motivated Reinforcement Learning
- Curiosity, Motivation and Attention Focus
- Motivated Reinforcement Learning Agents
- Curious Characters in Games
- Curious Characters for Multiuser Games
- Curious Characters for Games in Complex, Dynamic Environments
- Curious Characters for Games in Second Life
- Future
- Towards the Future.