Cargando…

Bio-Inspired Credit Risk Analysis Computational Intelligence with Support Vector Machines /

Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions suc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yu, Lean (Autor), Wang, Shouyang (Autor), Lai, Kin Keung (Autor), Zhou, Ligang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-77803-5
003 DE-He213
005 20220121000639.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540778035  |9 978-3-540-77803-5 
024 7 |a 10.1007/978-3-540-77803-5  |2 doi 
050 4 |a HJ9-9940 
072 7 |a KNV  |2 bicssc 
072 7 |a BUS051000  |2 bisacsh 
072 7 |a KNV  |2 thema 
082 0 4 |a 336  |2 23 
100 1 |a Yu, Lean.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bio-Inspired Credit Risk Analysis  |h [electronic resource] :  |b Computational Intelligence with Support Vector Machines /  |c by Lean Yu, Shouyang Wang, Kin Keung Lai, Ligang Zhou. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 244 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Credit Risk Analysis with Computational Intelligence: An Analytical Survey -- Credit Risk Analysis with Computational Intelligence: A Review -- Unitary SVM Models with Optimal Parameter Selection for Credit Risk Evaluation -- Credit Risk Assessment Using a Nearest-Point-Algorithm-based SVM with Design of Experiment for Parameter Selection -- Credit Risk Evaluation Using SVM with Direct Search for Parameter Selection -- Hybridizing SVM and Other Computational Intelligent Techniques for Credit Risk Analysis -- Hybridizing Rough Sets and SVM for Credit Risk Evaluation -- A Least Squares Fuzzy SVM Approach to Credit Risk Assessment -- Evaluating Credit Risk with a Bilateral-Weighted Fuzzy SVM Model -- Evolving Least Squares SVM for Credit Risk Analysis -- SVM Ensemble Learning for Credit Risk Analysis -- Credit Risk Evaluation Using a Multistage SVM Ensemble Learning Approach -- Credit Risk Analysis with a SVM-based Metamodeling Ensemble Approach -- An Evolutionary-Programming-Based Knowledge Ensemble Model for Business Credit Risk Analysis -- An Intelligent-Agent-Based Multicriteria Fuzzy Group Decision Making Model for Credit Risk Analysis. 
520 |a Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties. 
650 0 |a Finance, Public. 
650 0 |a Finance. 
650 0 |a Operations research. 
650 0 |a Data mining. 
650 0 |a Bioinformatics. 
650 1 4 |a Public Economics. 
650 2 4 |a Financial Economics. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Bioinformatics. 
700 1 |a Wang, Shouyang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Lai, Kin Keung.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhou, Ligang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642096556 
776 0 8 |i Printed edition:  |z 9783540848950 
776 0 8 |i Printed edition:  |z 9783540778028 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-77803-5  |z Texto Completo 
912 |a ZDB-2-SBE 
912 |a ZDB-2-SXEF 
950 |a Business and Economics (SpringerNature-11643) 
950 |a Economics and Finance (R0) (SpringerNature-43720)