Cargando…

From Hyperbolic Systems to Kinetic Theory A Personalized Quest /

Equations of state are not always effective in continuum mechanics. Maxwell and Boltzmann created a kinetic theory of gases, using classical mechanics. How could they derive the irreversible Boltzmann equation from a reversible Hamiltonian framework? By using probabilities, which destroy physical re...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tartar, Luc (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes of the Unione Matematica Italiana, 6
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-77562-1
003 DE-He213
005 20220116133525.0
007 cr nn 008mamaa
008 100715s2008 gw | s |||| 0|eng d
020 |a 9783540775621  |9 978-3-540-77562-1 
024 7 |a 10.1007/978-3-540-77562-1  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Tartar, Luc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Hyperbolic Systems to Kinetic Theory  |h [electronic resource] :  |b A Personalized Quest /  |c by Luc Tartar. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XXVIII, 282 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 6 
505 0 |a Historical Perspective -- Hyperbolic Systems: Riemann Invariants, Rarefaction Waves -- Hyperbolic Systems: Contact Discontinuities, Shocks -- The Burgers Equation and the 1-D Scalar Case -- The 1-D Scalar Case: the E-Conditions of Lax and of Oleinik -- Hopf's Formulation of the E-Condition of Oleinik -- The Burgers Equation: Special Solutions -- The Burgers Equation: Small Perturbations; the Heat Equation -- Fourier Transform; the Asymptotic Behaviour for the Heat Equation -- Radon Measures; the Law of Large Numbers -- A 1-D Model with Characteristic Speed 1/? -- A 2-D Generalization; the Perron-Frobenius Theory -- A General Finite-Dimensional Model with Characteristic Speed 1/? -- Discrete Velocity Models -- The Mimura-Nishida and the Crandall-Tartar Existence Theorems -- Systems Satisfying My Condition (S) -- Asymptotic Estimates for the Broadwell and the Carleman Models -- Oscillating Solutions; the 2-D Broadwell Model -- Oscillating Solutions: the Carleman Model -- The Carleman Model: Asymptotic Behaviour -- Oscillating Solutions: the Broadwell Model -- Generalized Invariant Regions; the Varadhan Estimate -- Questioning Physics; from Classical Particles to Balance Laws -- Balance Laws; What Are Forces? -- D. Bernoulli: from Masslets and Springs to the 1-D Wave Equation -- Cauchy: from Masslets and Springs to 2-D Linearized Elasticity -- The Two-Body Problem -- The Boltzmann Equation -- The Illner-Shinbrot and the Hamdache Existence Theorems -- The Hilbert Expansion -- Compactness by Integration -- Wave Front Sets; H-Measures -- H-Measures and "Idealized Particles" -- Variants of H-Measures -- Biographical Information -- Abbreviations and Mathematical Notation. 
520 |a Equations of state are not always effective in continuum mechanics. Maxwell and Boltzmann created a kinetic theory of gases, using classical mechanics. How could they derive the irreversible Boltzmann equation from a reversible Hamiltonian framework? By using probabilities, which destroy physical reality! Forces at distance are non-physical as we know from Poincaré's theory of relativity. Yet Maxwell and Boltzmann only used trajectories like hyperbolas, reasonable for rarefied gases, but wrong without bound trajectories if the "mean free path between collisions" tends to 0. Tartar relies on his H-measures, a tool created for homogenization, to explain some of the weaknesses, e.g. from quantum mechanics: there are no "particles", so the Boltzmann equation and the second principle, can not apply. He examines modes used by energy, proves which equation governs each mode, and conjectures that the result will not look like the Boltzmann equation, and there will be more modes than those indexed by velocity! 
650 0 |a Differential equations. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Differential Equations. 
650 2 4 |a Classical and Continuum Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540847090 
776 0 8 |i Printed edition:  |z 9783540775614 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 6 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-77562-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)