Cargando…

Machine Learning Techniques for Multimedia Case Studies on Organization and Retrieval /

Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Applying machi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cord, Matthieu (Editor ), Cunningham, Pádraig (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Cognitive Technologies,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-75171-7
003 DE-He213
005 20220113062344.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540751717  |9 978-3-540-75171-7 
024 7 |a 10.1007/978-3-540-75171-7  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning Techniques for Multimedia  |h [electronic resource] :  |b Case Studies on Organization and Retrieval /  |c edited by Matthieu Cord, Pádraig Cunningham. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 289 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Technologies,  |x 2197-6635 
505 0 |a to Learning Principles for Multimedia Data -- to Bayesian Methods and Decision Theory -- Supervised Learning -- Unsupervised Learning and Clustering -- Dimension Reduction -- Multimedia Applications -- Online Content-Based Image Retrieval Using Active Learning -- Conservative Learning for Object Detectors -- Machine Learning Techniques for Face Analysis -- Mental Search in Image Databases: Implicit Versus Explicit Content Query -- Combining Textual and Visual Information for Semantic Labeling of Images and Videos -- Machine Learning for Semi-structured Multimedia Documents: Application to Pornographic Filtering and Thematic Categorization -- Classification and Clustering of Music for Novel Music Access Applications. 
520 |a Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Applying machine learning techniques to multimedia content involves special considerations - the data is typically of very high dimension, and the normal distinction between supervised and unsupervised techniques does not always apply. This book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain. Arising from the EU MUSCLE network, a program that drew together multidisciplinary teams with expertise in machine learning, pattern recognition, artificial intelligence, and image, video, text and crossmedia processing, the book first introduces the machine learning principles and techniques that are applied in multimedia data processing and analysis. The second part focuses on multimedia data processing applications, with chapters examining specific machine learning issues in domains such as image retrieval, biometrics, semantic labelling, mobile devices, and mining in text and music. This book will be suitable for practitioners, researchers and students engaged with machine learning in multimedia applications. 
650 0 |a Artificial intelligence. 
650 0 |a Information storage and retrieval systems. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 0 |a Data mining. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Cord, Matthieu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cunningham, Pádraig.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540844150 
776 0 8 |i Printed edition:  |z 9783540751700 
776 0 8 |i Printed edition:  |z 9783642443626 
830 0 |a Cognitive Technologies,  |x 2197-6635 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-75171-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)