Cargando…

Zeta Functions of Groups and Rings

Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: du Sautoy, Marcus (Autor), Woodward, Luke (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Mathematics, 1925
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-74776-5
003 DE-He213
005 20220118105847.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540747765  |9 978-3-540-74776-5 
024 7 |a 10.1007/978-3-540-74776-5  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a du Sautoy, Marcus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Zeta Functions of Groups and Rings  |h [electronic resource] /  |c by Marcus du Sautoy, Luke Woodward. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 212 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1925 
505 0 |a Nilpotent Groups: Explicit Examples -- Soluble Lie Rings -- Local Functional Equations -- Natural Boundaries I: Theory -- Natural Boundaries II: Algebraic Groups -- Natural Boundaries III: Nilpotent Groups. 
520 |a Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation. 
650 0 |a Group theory. 
650 0 |a Number theory. 
650 0 |a Nonassociative rings. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Number Theory. 
650 2 4 |a Non-associative Rings and Algebras. 
700 1 |a Woodward, Luke.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540843344 
776 0 8 |i Printed edition:  |z 9783540747017 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1925 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-74776-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)