|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-74776-5 |
003 |
DE-He213 |
005 |
20220118105847.0 |
007 |
cr nn 008mamaa |
008 |
100301s2008 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540747765
|9 978-3-540-74776-5
|
024 |
7 |
|
|a 10.1007/978-3-540-74776-5
|2 doi
|
050 |
|
4 |
|a QA174-183
|
072 |
|
7 |
|a PBG
|2 bicssc
|
072 |
|
7 |
|a MAT002010
|2 bisacsh
|
072 |
|
7 |
|a PBG
|2 thema
|
082 |
0 |
4 |
|a 512.2
|2 23
|
100 |
1 |
|
|a du Sautoy, Marcus.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Zeta Functions of Groups and Rings
|h [electronic resource] /
|c by Marcus du Sautoy, Luke Woodward.
|
250 |
|
|
|a 1st ed. 2008.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2008.
|
300 |
|
|
|a XII, 212 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1925
|
505 |
0 |
|
|a Nilpotent Groups: Explicit Examples -- Soluble Lie Rings -- Local Functional Equations -- Natural Boundaries I: Theory -- Natural Boundaries II: Algebraic Groups -- Natural Boundaries III: Nilpotent Groups.
|
520 |
|
|
|a Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation.
|
650 |
|
0 |
|a Group theory.
|
650 |
|
0 |
|a Number theory.
|
650 |
|
0 |
|a Nonassociative rings.
|
650 |
1 |
4 |
|a Group Theory and Generalizations.
|
650 |
2 |
4 |
|a Number Theory.
|
650 |
2 |
4 |
|a Non-associative Rings and Algebras.
|
700 |
1 |
|
|a Woodward, Luke.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540843344
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540747017
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1925
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-540-74776-5
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|