Weighted Littlewood-Paley Theory and Exponential-Square Integrability
Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn't really make sense. It does so by letting us control certain...
Cote: | Libro Electrónico |
---|---|
Auteur principal: | Wilson, Michael (Auteur) |
Collectivité auteur: | SpringerLink (Online service) |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2008.
|
Édition: | 1st ed. 2008. |
Collection: | Lecture Notes in Mathematics,
1924 |
Sujets: | |
Accès en ligne: | Texto Completo |
Documents similaires
-
Analysis in Banach Spaces Volume I: Martingales and Littlewood-Paley Theory /
par: Hytönen, Tuomas, et autres
Publié: (2016) -
Fourier Integral Operators
par: Duistermaat, J.J
Publié: (2011) -
Hermitian Analysis From Fourier Series to Cauchy-Riemann Geometry /
par: D'Angelo, John P.
Publié: (2013) -
Discrete Fourier Analysis
par: Wong, M. W.
Publié: (2011) -
The Mathematical Legacy of Leon Ehrenpreis
Publié: (2012)