Chargement en cours…

Optimal Transportation Networks Models and Theory /

The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteurs principaux: Bernot, Marc (Auteur), Caselles, Vicent (Auteur), Morel, Jean-Michel (Auteur)
Collectivité auteur: SpringerLink (Online service)
Format: Électronique eBook
Langue:Inglés
Publié: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Édition:1st ed. 2009.
Collection:Lecture Notes in Mathematics, 1955
Sujets:
Accès en ligne:Texto Completo
Table des matières:
  • Introduction: The Models
  • The Mathematical Models
  • Traffic Plans
  • The Structure of Optimal Traffic Plans
  • Operations on Traffic Plans
  • Traffic Plans and Distances between Measures
  • The Tree Structure of Optimal Traffic Plans and their Approximation
  • Interior and Boundary Regularity
  • The Equivalence of Various Models
  • Irrigability and Dimension
  • The Landscape of an Optimal Pattern
  • The Gilbert-Steiner Problem
  • Dirac to Lebesgue Segment: A Case Study
  • Application: Embedded Irrigation Networks
  • Open Problems.