Cargando…

Logical and Relational Learning

This textbook covers logical and relational learning in depth, and hence provides an introduction to inductive logic programming (ILP), multirelational data mining (MRDM) and (statistical) relational learning (SRL). These subfields of data mining and machine learning are concerned with the analysis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: De Raedt, Luc (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Cognitive Technologies,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-68856-3
003 DE-He213
005 20220119154614.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540688563  |9 978-3-540-68856-3 
024 7 |a 10.1007/978-3-540-68856-3  |2 doi 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
072 7 |a UMZ  |2 thema 
082 0 4 |a 005.1  |2 23 
100 1 |a De Raedt, Luc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Logical and Relational Learning  |h [electronic resource] /  |c by Luc De Raedt. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XV, 387 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Technologies,  |x 2197-6635 
505 0 |a An Introduction to Logic -- An Introduction to Learning and Search -- Representations for Mining and Learning -- Generality and Logical Entailment -- The Upgrading Story -- Inducing Theories -- Probabilistic Logic Learning -- Kernels and Distances for Structured Data -- Computational Aspects of Logical and Relational Learning -- Lessons Learned. 
520 |a This textbook covers logical and relational learning in depth, and hence provides an introduction to inductive logic programming (ILP), multirelational data mining (MRDM) and (statistical) relational learning (SRL). These subfields of data mining and machine learning are concerned with the analysis of complex and structured data sets that arise in numerous applications, such as bio- and chemoinformatics, network analysis, Web mining, natural language processing, within the rich representations offered by relational databases and computational logic. The author introduces the machine learning and representational foundations of the field and explains some important techniques in detail by using some of the classic case studies centered around well-known logical and relational systems. The book is suitable for use in graduate courses and should be of interest to graduate students and researchers in computer science, databases and artificial intelligence, as well as practitioners of data mining and machine learning. It contains numerous figures and exercises, and slides are available for many chapters. 
650 0 |a Software engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Application software. 
650 1 4 |a Software Engineering. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer and Information Systems Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540860129 
776 0 8 |i Printed edition:  |z 9783642057489 
776 0 8 |i Printed edition:  |z 9783540200406 
830 0 |a Cognitive Technologies,  |x 2197-6635 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-68856-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)