|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-46959-9 |
003 |
DE-He213 |
005 |
20220119010254.0 |
007 |
cr nn 008mamaa |
008 |
100301s2007 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540469599
|9 978-3-540-46959-9
|
024 |
7 |
|
|a 10.1007/3-540-46944-3
|2 doi
|
050 |
|
4 |
|a QA174-183
|
072 |
|
7 |
|a PBG
|2 bicssc
|
072 |
|
7 |
|a MAT002010
|2 bisacsh
|
072 |
|
7 |
|a PBG
|2 thema
|
082 |
0 |
4 |
|a 512.2
|2 23
|
100 |
1 |
|
|a Green, James A.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Polynomial Representations of GL_n
|h [electronic resource] :
|b with an Appendix on Schensted Correspondence and Littelmann Paths /
|c by James A. Green.
|
250 |
|
|
|a 2nd ed. 2007.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2007.
|
300 |
|
|
|a X, 166 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 830
|
505 |
0 |
|
|a Preface to the second edition -- J. A. Green: Polynomial representations of GLn: 1.Introduction -- 2.Polynomial representations of GL_n(K): The Schur algebra -- 3.Weights and characters -- 4.The module D_{\lambda, K} -- 5.The Carter-Lusztig modules V_{\lambda, K} -- 6.Representation theory of the symmetric group -- Appendix on Schensted correspondence and Littelmann paths by K. Erdmann, J. A. Green and M. Schocker: A. Introduction -- B. The Schensted process -- C. Schensted and Littelmann -- D. Theorem A and some of its consequences -- E. Tables -- Index of Symbols -- References -- Index.
|
520 |
|
|
|a The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.
|
650 |
|
0 |
|a Group theory.
|
650 |
|
0 |
|a Associative rings.
|
650 |
|
0 |
|a Associative algebras.
|
650 |
|
0 |
|a Nonassociative rings.
|
650 |
|
0 |
|a Discrete mathematics.
|
650 |
|
0 |
|a Functions of real variables.
|
650 |
1 |
4 |
|a Group Theory and Generalizations.
|
650 |
2 |
4 |
|a Associative Rings and Algebras.
|
650 |
2 |
4 |
|a Non-associative Rings and Algebras.
|
650 |
2 |
4 |
|a Discrete Mathematics.
|
650 |
2 |
4 |
|a Real Functions.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540831761
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540469445
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 830
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/3-540-46944-3
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|