FastSLAM A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics /
This monograph describes a new family of algorithms for the simultaneous localization and mapping problem in robotics (SLAM). SLAM addresses the problem of acquiring an environment map with a roving robot, while simultaneously localizing the robot relative to this map. This problem has received enor...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2007.
|
Edición: | 1st ed. 2007. |
Colección: | Springer Tracts in Advanced Robotics,
27 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1 Introduction
- Applications of SLAM, Joint Estimation, Posterior Estimation, The Extended Kalman Filter, Structure and Sparsity in SLAM, FastSLAM, Outline
- 2 The SLAM Problem
- Problem Definition, SLAM Posterior, SLAM as a Markov Chain, Extended Kalman Filtering, Scaling SLAM Algorithms, Robust Data Association, Comparison of FastSLAM to Existing Techniques
- 3 FastSLAM 1.0
- Particle Filtering, Factored Posterior Representation, The FastSLAM 1.0 Algorithm, FastSLAM with Unknown Data Association, Summary of the FastSLAM Algorithm, FastSLAM Extensions, Log(N) FastSLAM, Experimental Results, Summary
- 4 FastSLAM 2.0
- Sample Impoverishment, FastSLAM 2.0, FastSLAM 2.0 Convergence, Experimental Results, Grid-based FastSLAM, Summary
- 5 Dynamic Environments
- SLAM With Dynamic Landmarks, Simultaneous Localization and People Tracking, FastSLAP Implementation,Experimental Results, Summary
- 6 Conclusions
- Conclusions, Future Work
- References, Index.