Subspace, Latent Structure and Feature Selection Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2006.
|
Edición: | 1st ed. 2006. |
Colección: | Theoretical Computer Science and General Issues,
3940 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Invited Contributions
- Discrete Component Analysis
- Overview and Recent Advances in Partial Least Squares
- Random Projection, Margins, Kernels, and Feature-Selection
- Some Aspects of Latent Structure Analysis
- Feature Selection for Dimensionality Reduction
- Contributed Papers
- Auxiliary Variational Information Maximization for Dimensionality Reduction
- Constructing Visual Models with a Latent Space Approach
- Is Feature Selection Still Necessary?
- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data
- Incorporating Constraints and Prior Knowledge into Factorization Algorithms - An Application to 3D Recovery
- A Simple Feature Extraction for High Dimensional Image Representations
- Identifying Feature Relevance Using a Random Forest
- Generalization Bounds for Subspace Selection and Hyperbolic PCA
- Less Biased Measurement of Feature Selection Benefits.