Cargando…

Constraint-Based Mining and Inductive Databases European Workshop on Inductive Databases and Constraint Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected Papers /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Boulicaut, Jean-Francois (Editor ), De Raedt, Luc (Editor ), Mannila, Heikki (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Lecture Notes in Artificial Intelligence, 3848
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31351-9
003 DE-He213
005 20221012203743.0
007 cr nn 008mamaa
008 100417s2006 gw | s |||| 0|eng d
020 |a 9783540313519  |9 978-3-540-31351-9 
024 7 |a 10.1007/11615576  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Constraint-Based Mining and Inductive Databases  |h [electronic resource] :  |b European Workshop on Inductive Databases and Constraint Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected Papers /  |c edited by Jean-Francois Boulicaut, Luc De Raedt, Heikki Mannila. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a X, 404 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 3848 
505 0 |a The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery -- A Relational Query Primitive for Constraint-Based Pattern Mining -- To See the Wood for the Trees: Mining Frequent Tree Patterns -- A Survey on Condensed Representations for Frequent Sets -- Adaptive Strategies for Mining the Positive Border of Interesting Patterns: Application to Inclusion Dependencies in Databases -- Computation of Mining Queries: An Algebraic Approach -- Inductive Queries on Polynomial Equations -- Mining Constrained Graphs: The Case of Workflow Systems -- CrossMine: Efficient Classification Across Multiple Database Relations -- Remarks on the Industrial Application of Inductive Database Technologies -- How to Quickly Find a Witness -- Relevancy in Constraint-Based Subgroup Discovery -- A Novel Incremental Approach to Association Rules Mining in Inductive Databases -- Employing Inductive Databases in Concrete Applications -- Contribution to Gene Expression Data Analysis by Means of Set Pattern Mining -- Boolean Formulas and Frequent Sets -- Generic Pattern Mining Via Data Mining Template Library -- Inductive Querying for Discovering Subgroups and Clusters. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Boulicaut, Jean-Francois.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a De Raedt, Luc.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mannila, Heikki.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540819714 
776 0 8 |i Printed edition:  |z 9783540313311 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 3848 
856 4 0 |u https://doi.uam.elogim.com/10.1007/11615576  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)