Cargando…

Projective Duality and Homogeneous Spaces

Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the ap...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tevelev, Evgueni A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Encyclopaedia of Mathematical Sciences ; 133
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-26957-1
003 DE-He213
005 20220115231033.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540269571  |9 978-3-540-26957-1 
024 7 |a 10.1007/b138367  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Tevelev, Evgueni A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Projective Duality and Homogeneous Spaces  |h [electronic resource] /  |c by Evgueni A. Tevelev. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 250 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences ;  |v 133 
505 0 |a to Projective Duality -- Actions with Finitely Many Orbits -- Local Calculations -- Projective Constructions -- Vector Bundles Methods -- Degree of the Dual Variety -- Varieties with Positive Defect -- Dual Varieties of Homogeneous Spaces -- Self-dual Varieties -- Singularities of Dual Varieties. 
520 |a Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Geometry, Differential. 
650 0 |a Topology. 
650 0 |a Discrete mathematics. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topology. 
650 2 4 |a Discrete Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642061721 
776 0 8 |i Printed edition:  |z 9783540803423 
776 0 8 |i Printed edition:  |z 9783540228981 
830 0 |a Encyclopaedia of Mathematical Sciences ;  |v 133 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138367  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)